

New French DGPS maritime service powered by EDAS

Tamás Horváth¹, Etienne Leroy²

¹ Alberding GmbH, DE ² CEREMA, FR

EGNOS Workshop, 24-25 September 2019, Rome, Italy

Tamás Horváth

Outline

- Alberding GmbH and CEREMA
- Background
- Modernised French DGPS service
- Initial performance results
- Conclusions and service operator feedback

Alberding GmbH

- German GNSS software and hardware development company
- Founded in 1994
- Based in Wildau (near Berlin)
- 14 employees (12 engineers)
- Independent from GNSS receiver manufacturers

Alberding range of services (portfolio)

Adaptable software, sensors, systems and services for automated applications of precise (mm-cm) satellite-based positioning, monitoring and data transmission

Traffic/Transportation

4/22

Beacon.net + Beacon Site Control

- Central data processing
- Scalable, modular DGNSS software
- GNSS data input, VRS and EGNOS-VRS processing, integrity monitoring (PBM, FFM), data transmission (RTCM, AIS #17, VDES, Ntrip)
- Combination of DGNSS/RTK and waterway information
- R-Mode support

Alberding Beacon Site Control

- Decentralised processing local backup
- EGNOS-VRS correction generation
- Pre-Broadcast Integrity Monitoring
- Correction selection for transmission

Tamás Horváth

New French DGPS maritime service powered by EDAS

25 Sept 2019 5/22

DGPS service in France - stakeholders

Central administration

French Maritime Authorities (DAM) manage policy and budget at the national level The AtoN office of the DAM maritime safety department is responsible for the DGPS stations

- 8 decentralised administrations

 (DIRM & DM) manage the operation and
 maintenance of the AtoNs
- CEREMA (public administrative institution) navigation and positioning systems division supports DAM by providing scientific and technical expertise

Legacy French DGPS network

- 7 beacon DGPS stations
- No redundancy at the stations
- No Pre-Broadcast Monitoring
- Central control station at Belle-île (Far Field Monitoring)
- Old low rate WAN
- No changes since the 90's
- Obsolete equipment
- Availability decreasing

Role of CEREMA in the project

- CEREMA was requested by DAM to
 - Analyse the legacy DGPS system
 - Propose a cost effective solution to modernise the service
 - Conduct a Proof of Concept on that solution including a prototype, tests and result analysis at laboratory scale & field scale
 - Specify requirements for the modernisation of the service
 - Support AtoN operators to deploy the modernised service
- Test campaigns and preliminary studies
 - Successful test campaigns in 2016-2018
 - Cost-Benefit Analyses conducted by CEREMA and GSA

Centralised EGNOS-based architecture selected

EGNOS benefits

- Free of charge service
- Redundancy of signal sources (SiS and EDAS)
- EGNOS-based VRS: corrections generated remotely for locations with no physical reference stations (centralised architecture)
- Reduction of onsite infrastructure
- Quality of corrections not affected by local issues that could impact the beacon site (e.g. multipath, interference)
- Transparent for end users and compatible with deployed user equipment

Modernised French DGPS network

WAN – new governmental communication lines

IALA Beacon

Far Field Monitor

Central Server

Official commissioning of the first French IALA beacon station transmitting EGNOS-based VRS corrections: 1 March 2019 (Olonne)

- 3 more stations equipped in 2019
- All 6 stations will be commissioned by the end of 2020

EGNOS-VRS	PBM Station	(Monitoring)	FFM Station (Rover)		
EGINU3-VK3	Location	Baseline	Location	Baseline	
IALA HEAU Héauville	PBM HEAU	0 km	FFM BELL 1 Belle Île	274 km	
IALA PNDB Pont de Buis	PBM PNDB	0 km	FFM BELL 2 Belle Île	127 km	
IALA SABL Olonne	PBM SABL	0 km	FFM BELL 3 Belle Île	139 km	
IALA PORQ Porquerolles	PBM PORQ	0 km	FFM TOUL Toulon	27 km	

Tamás Horváth

Modernised facilities

Modernised DGPS rack at transmission site

Modernised transmitting antenna IALA Beacon BEAR

Tamás Horváth

New system architecture

Tamás Horváth

Central data processing

Tamás Horváth

New French DGPS maritime service powered by EDAS

25 Sept 2019 13/22

- RTCA source: EDAS SISNeT with EGNOS SiS backup software takes any available RTCA input
- EGNOS-VRS corrections generated for PRNs 123 & 136 software automatically selects one of them for output based on availability, health status and user-defined priority
- Pre-broadcast integrity monitoring with 2 monitoring stations software automatically selects monitoring station based on availability (not used in the current French setup)
- EGNOS SiS based local backup at the IALA beacon EGNOS-VRS corrections generated and checked locally if no connection to data centre (not used in the current French setup)

Maritime performance requirements

	Accuracy (95%)	Time to Alarm	Continuity (15 min)	Availability	Update Interval
Harbour					
entrances,					
harbour	≤ 10 m	< 10 s	≥ 99.97%	> 99.8%	≤2 s
approaches and					
coastal waters					

IMO Resolution A.1046 (27)

Initial performance results

Time frame: 2 Jun 2019 – 25 Aug 2019

	HEAU	PNDB	SABL	PORQ	Requirement IMO Res. A. 1046
Availability before integrity check	99.97%	99.97%	99.97%	99.97%	
Availability of healthy corrections	98.56%	99.89%	99.92%	99.93%	> 99.8%
Accuracy (mean)	0.85 m	0.88 m	0.45 m	0.57 m	
Accuracy (95%)	1.51 m	1.40 m	0.98 m	1.08 m	≤ 10 m
Continuity before integrity check	98.37%	98.37%	98.38%	98.39%	
Continuity of healthy corrections	97.57%	97.19%	98.08%	98.06%	≥ 99.97%

Availability and continuity:service level, measured at the central server
with 1 s temporal resolutionAccuracy:system level, measured at the FFM station

Remarks to performance results

• HEAU-VRS availability affected by

- 28 h communications outage to IALA Beacon station HEAU on 1-2 July.
 - \rightarrow add local backup at the transmission sites
 - \rightarrow use redundant communication lines
 - \rightarrow use redundant PBM with 2 monitoring stations

Accuracy performance affected by

Biased FFM station coordinates. New coordinates introduced on 18 July causing a position error reduction of ~ 0.5 m. → determine station coordinates with cm accuracy

Continuity performance affected by

- Monitoring station data gaps \rightarrow use redundant PBM with 2 monitoring stations
- Many short (< 1 min) data gaps in the correction output due to overloaded server computer → add more computing power to central server
- Several 'unhealthy' integrity events \rightarrow increase position error PBM threshold to 10 m
 - → use high quality GNSS equipment and ensure clear sky view at the monitoring stations
- Integrity events in the pseudorange domain
 - Very few events (0.06% of all epochs)
 - Individual low elev. satellites excluded due to high PRC residuals

Tamás Horváth

25 Sept 2019 18/22

Radiobeacon skywave interference Field strength FS [dBµV/m] 50.00 ΒμV/m]-40.00-**Field Strength** 30.00-20.00-10.00-0.00-2019-06-24 2019-06-22 2019-06-23 2019-06-25 2019-06-26 Time [UTC] Signal to noise ratio SNR [dB] 40.00 [dB] Signal to Noise 30.00-20.00-Ratio 10.00-0.00-2019-06-22 2019-06-23 2019-06-24 2019-06-25 2019-06-26 Time [UTC] Word error rate WER [% 100.00 FFM HEAU BELL (274 km) 75.00-Word Error Rate 50.00-FFM PNDB BELL (127 km) 25.00-0.00-2019-06-24 2019-06-25 Time [UTC] Data age Data age 60.00 [s] 45.00-Data Age 30.00-15.00-0.00 2019-06-23 2019-06-25 2019-06-22 2019-06-24 2019-06-26 Time [UTC] Position mode Position mode 8.00 6.00-**Position Quality** 4.00 2.00 . 0.00-Alber 2019-06-22 2019-06-23 2019-06-24 2019-06-25 2019-06-26 Time [UTC]

Tamás Horváth

RTCM Type 1 \rightarrow Type 9/3

Type 9 messages are useful for slow data links that are susceptible to interference

Conclusions and recommendations

- The legacy French DGPS system is currently being replaced by a new centralised EGNOS/EDAS-based DGPS service
- **Significant cost savings** of the EGNOS/EDAS-based solution with respect to a traditional DGPS setup (at least 50%)
- Very good initial operational performance results indicate
 - Significantly increased service availability compared to the old system.
 Availability performance meets the IMO requirements.
 - Accuracy performance fulfils expectations and clearly meets the IMO requirements.
 - Continuity performance is affected by overloaded server computer, monitoring station outages and not optimal integrity settings.

 \rightarrow made recommendations to improve continuity performance

- Integrity performance proved the high quality of EGNOS-based VRS corrections

CEREMA R&D and operating feedback

- EGNOS correction transmission via IALA beacons is still a rather new concept and not too many off the shelve products exist.
- Requirements need to be carefully specified in that case.
- Cost savings can be made if working with smaller companies instead of the big equipment manufacturers. Consequently, we need to work with hardware companies that are sometimes not DGNSS specialists.
- During the testing and early operations phase we experienced some interruptions in our service both due to software and hardware failures that had to be improved with the providers.
- A local backup at the transmission sites would be very interesting to complement the EGNOS-based centralised approach. It is not clear yet if this backup should also be EGNOS-based or traditional DGPS.
- Remote control & monitoring of all on site equipment is very important.

Thank you for your attention!

Tamás Horváth Alberding GmbH Schmiedestraße 2 D-15745 Wildau Phone: +49 3375 5250 370 Mobile: +49 151 1880 4899 Email: horvath@alberding.eu Web: www.alberding.eu

Etienne Leroy

Cerema Eau Mer Fleuves Division Systèmes de navigation et positionnement 155, Rue Pierre Bouguer 29280 Plouzané Phone: +33 2 9805 7613 Email: etienne.leroy@cerema.fr

Tamás Horváth

Reserve slides

Tamás Horváth

French PBM integrity settings

Integrity parameter	PBM threshold		
Max PRC	60 m		
Max RRC	0.6 m/s		
Max PRC Residual	10 m		
Max RRC Residual	0.5 m/s		
Max (Horizontal) Position Error	5 m		
Max PRC Residual Delay	5 s		
Max RRC Residual Delay	5 s		
Max Position Error Delay	5 s		

Tamás Horváth