EGNOS survey open!

http://egnos-portal.gsa.europa.eu/egnos-users-satisfaction-survey

unch

7-8 October Lisbon The EGN () S Service Provision workshop

14:30-15:45	Successful EGNOS implementation stories in Aviation (I)
Introduction	
	Luc Tytgat – Director of Pan-European Single Sky (EUROCONTROL)
∽ Implen	nentation of advanced EGNOS operations in Switzerland Laurent Delétraz – Sales and business development mngr (Skyguide)
	Marc Troller – Navigation Expert (Skyguide)
🗢 DSNA i	mplements PBN with EGNOS
	Corinne Bousquet – Pôle Navigation (DSNA)
🗢 Training	g: The key to success
	Richard Bristowe – Head of Training (Aviation Southwest)
C Region	al aviation, a key market for EGNOS
	Jaap Horsten – Engineering Consultant (VLM)
15:45-16:15	Coffee break

14:30-15:45	Successful EGNOS implementation stories in Aviation (I)			
CIntroduction				
	Luc Tytgat – Director of Pan-European Single Sky (EUROCONTROL)			
∽Imp	lementation of advanced EGNOS operations in Switzerland Laurent Delétraz – Sales and business development mngr (Skyguide)			
	Marc Troller – Navigation Expert (Skyguide)			
∽DSN	IA implements PBN with EGNOS <i>Corinne Bousquet – Pôle Navigation (DSNA)</i>			
🗢 Traiı	ning: The key to success Richard Bristowe – Head of Training (Aviation Southwest)			
🗢 Regi	ional aviation, a key market for EGNOS Jaap Horsten – Engineering Consultant (VLM)			
15:45-16:15	Coffee break			

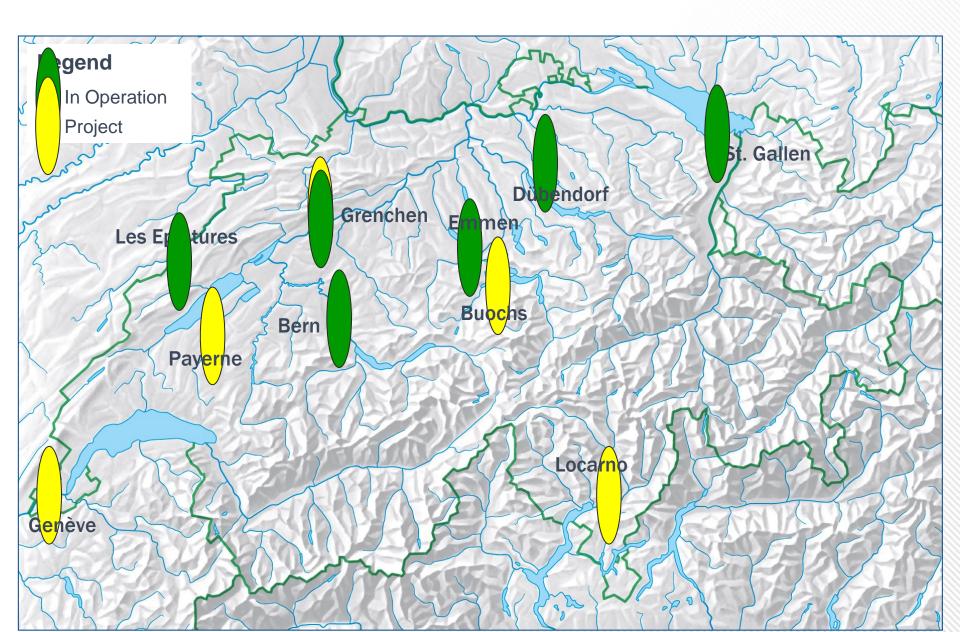
14:30-15:45	Successful EGNOS implementation stories in Aviation (I)				
CINTRO	Introduction				
	Luc Tytgat – Director of Pan-European Single Sky (EUROCONTROL)				
CIMPler	mentation of advanced EGNOS operations in Switzerland Laurent Delétraz – Sales and business development mngr (Skyguide)				
	Marc Troller – Navigation Expert (Skyguide)				
∽ DSNA 1	implements PBN with EGNOS <i>Corinne Bousquet – Pôle Navigation (DSNA)</i>				
∽ Trainin	ng: The key to success Richard Bristowe – Head of Training (Aviation Southwest)				
∽Regior	nal aviation, a key market for EGNOS Jaap Horsten – Engineering Consultant (VLM)				
15:45-16:15	Coffee break				

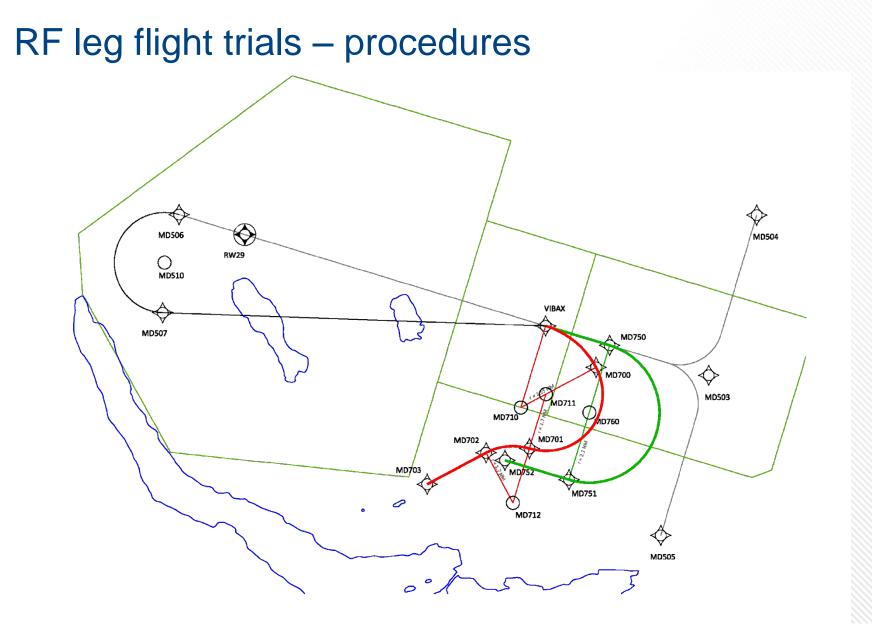
14:30-15:45	Successful EGNOS implementation stories in Aviation (I)			
CIntroduction				
	Luc Tytgat – Director of Pan-European Single Sky (EUROCONTROL)			
Implementation of advanced EGNOS operations in Switzerland Laurent Delétraz – Sales and business development mngr (Skyguide)				
	Marc Troller – Navigation Expert (Skyguide)			
∽ DSNA	implements PBN with EGNOS			
	Corinne Bousquet – Pôle Navigation (DSNA)			
🗢 Traini	ing: The key to success			
	Richard Bristowe – Head of Training (Aviation Southwest)			
C Regio	onal aviation, a key market for EGNOS Jaap Horsten – Engineering Consultant (VLM)			
	Saup Horsten - Engineering consultant (VEW)			
15:45-16:15	Coffee break			

member of

FABEC

Implementation of advanced


EGNOS operations in

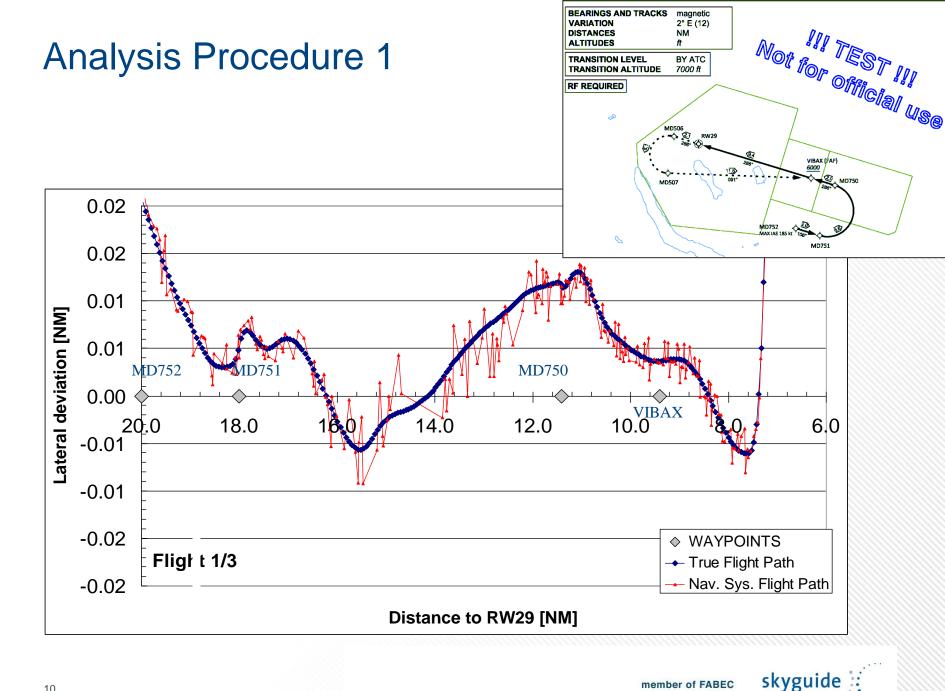

Switzerland

Marc Troller CNS expert group

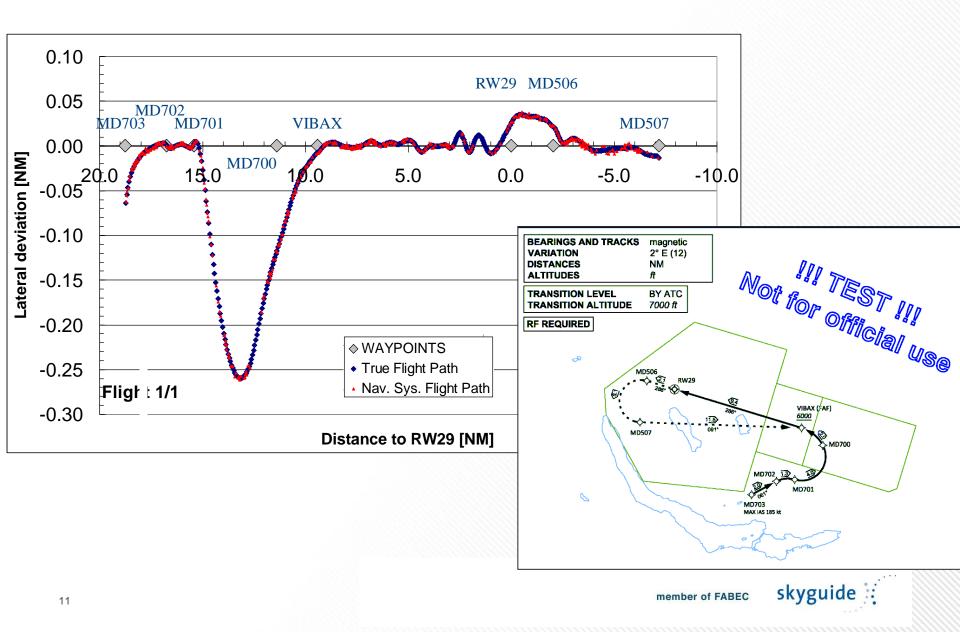
Laurent Delétraz sales and business development manager

Current Swiss applications of EGNOS

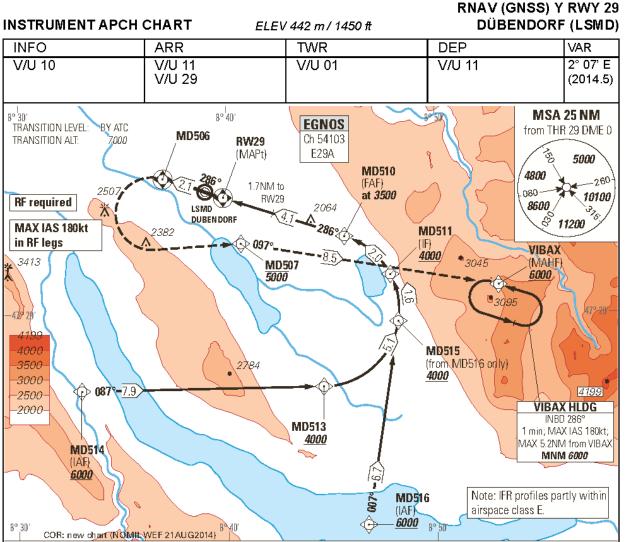
member of FABEC


skyguide

Aircraft



- > Super King Air of the Swiss Airforce
- > Rockwell Collins ProLine 21 WAAS(EGNOS)/LPV
- > Rockwell Collins GPS4000S GPS/SBAS receiver
- > RF leg functionality
- > Goal: Ability to test avdvanced PBN procedures and functionalities

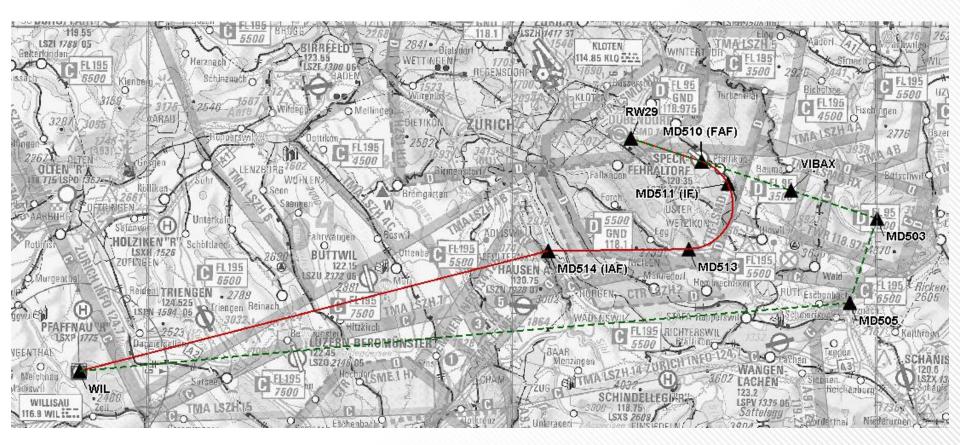


Analysis Procedure 2

Instrument APCH chart LSMD (1)

DUB

skyguide

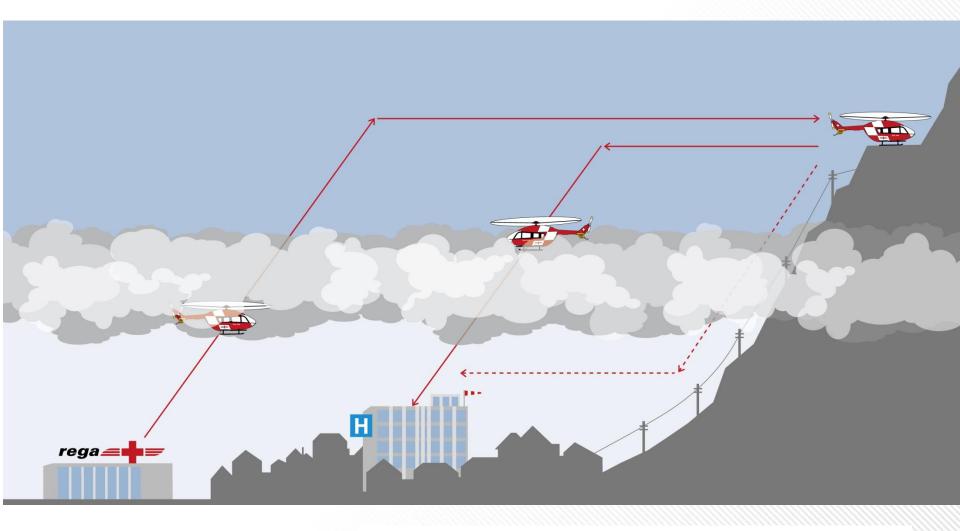

Instrument APCH chart LSMD (2)

MISSED APPROACH			1.7 NM	M DESCENT GRADIENT 482		
Climb straight ahead. At MD50 to MD507 (MAX IAS 180kt). Cl	RW29 (MAPt)	to RW29 2330	MD510 (FAF) at <i>3500</i>	MD511 (IF) <u>4000</u>		
After MD507 continue climb to	1	1				
Proceed to VIBAX and hold.		l	Ì			
MNM climb gradient 4.4% req 6000 at VIBAX.	uired to reach		4.5° (7.87%)	286		
RDH 50			DA/DA 232		L THR 29 ELEV <i>1470</i>	
NM THR 29	3 2	1 0	1 2 3	4 5	6 7	
DIST to RW29	2.0		3.0		4.0	
ALTITUDE	2480	2480 2960		3	3440	
	MACG	Α		B	C	
LNAV MDA(H)	2.5%		2610	(1140)		
	5.3% up to <i>3000</i>		218	0 (710)		
LPV DA(H)	2.5%	2250 (780)	227	0 (800)	2290 (820)	
RVR m			1	500		
LPV DA(H)	5.0% up to <i>2600</i>	1970 (500)	199	0 (520)	<i>2010</i> (540)	
RVR m	800					
CIRCLING	3200 (1750)					
VIS	2500m					
Notes: - 0.6 NM BFR THR29 r - non-standard approa	ight of centreline visual se ch angle.	gment surface (VSS)	penetrated by trees	s up to <i>1710ft</i> AMS	L (LNAV only).	
RNAV (GNSS) Y RWY 29		47° 23.9' N 008° 38.9' E			DORF (LSMD	

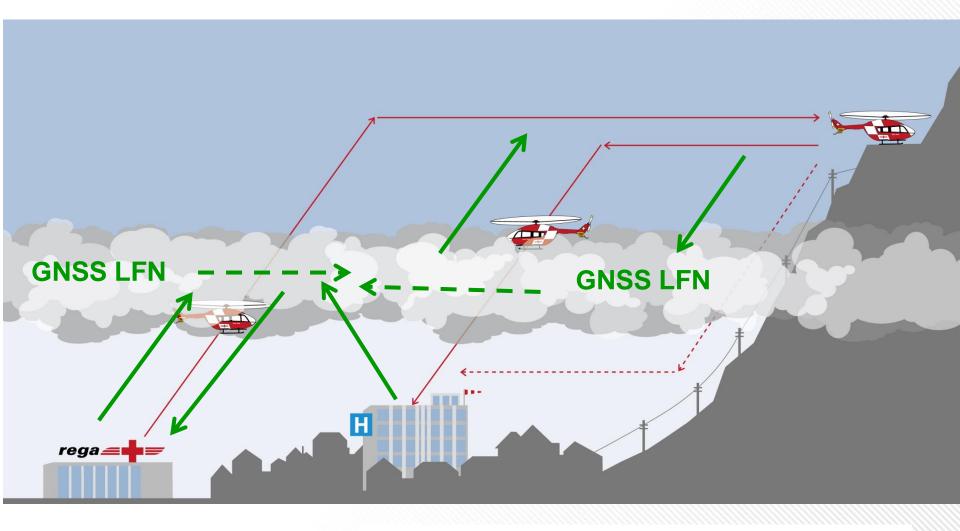
Implemented: 21 August 2014

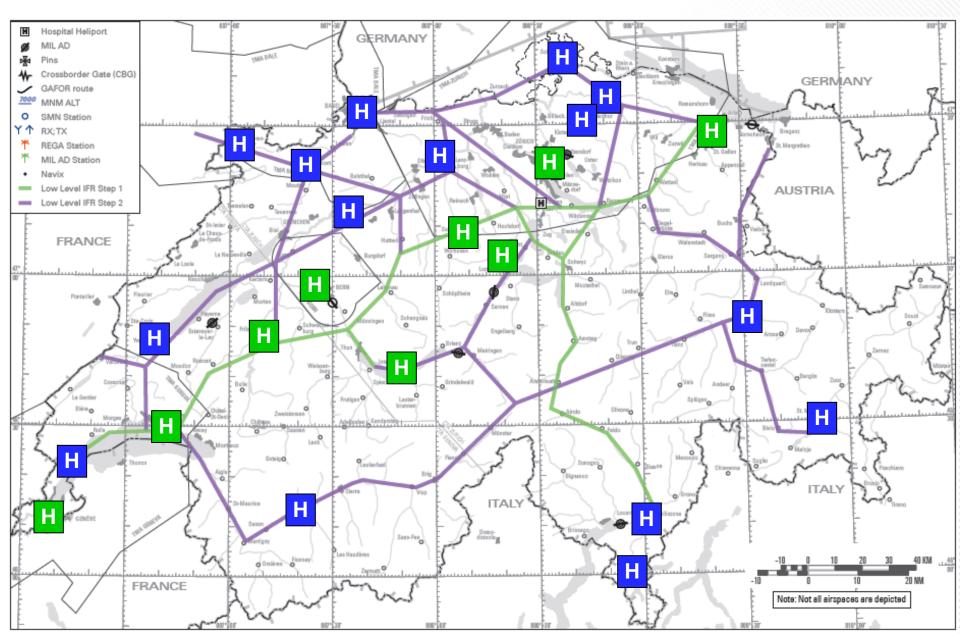
skyguide 🗄

LSMD operational benefits


Green track: 63 NM Red track: 46 NM

→ Savings: 17 NM (27%)


Swiss GNSS LFN (Low-Flight-Network)


skyguide

Swiss GNSS LFN (Low-Flight-Network)

GNSS LFN CH : phase 1 (green) & phase 2 (magenta)

GNSS LFN CH routes phase 1

ALT Table KY251	MEA		
SPR (LS101) - LS102	4000 ft	and the second sec	
LS102 - LS103 LS103 - FRI (LS104) FRI (LS104) - LS105 LS105 - LS106	6000 ft	DEGES	
LS106 - ME103 (LS107) ME103 (LS107) - ME104 (LS108) ME104 (LS108) - ZC700 (LS109) ZC700 (LS109) - LS110	5000 ft	LS603 RONIX ZC700 (LS604) (LS109) LS112	
LS110 - LS111 LS111 - LS112		$\sim 10^{-10}$ ALT table KY256	MEA
LS112 - DEGES (LS113)	6000 ft	LS111	
ALT Table KY254	MEA	ME10417-3-3-3 LS201 LS601 - LS602 LS602 - LS603 LS201 LS603	5000 ft
LS105 - DACAG (LS401)	6000 ft	LS105 (LS107) LS201 LS603 - RONIX (LS604) LS202 RONIX (LS604) - ZC700 (LS109)	
	.S103	(LSTO4) DACAG	MEA 7000 ft
and the second		(LS401) LS208 LS207 LS209 LS210 ALT Table KY252	MEA
			6000 ft
(LS+01) LS10	02	Solution (1997) Solution (1997)	7000 ft
\sim	5		8000 ft
w y	}	LS213 LS204 - LS205 LS205 - LS206	9000 ft
June {		LS214 LS205 - LS206 1 LS206 - LS207 1 LS207 - LS208 1	10000 ft
	7		11000 ft
	\sim		12000 ft
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		12000 ft
	2		11000 ft 9000 ft
	V	LS211 - LS212 LS212 - LS213	7000 ft
		LS213 - LS214	7000 ft
18		member of FABEC skyguide	

# GNSS LFN phase 1 planning

> Planned Implementation Date: 5 March 2015

- > Navigation Specification: RNP 0.3
- > Challenge: No EASA AMC available
- > Aircraft Used: Helicopter only with
  - CMA-5024 GPS/SBAS receivers
  - Chelton GPS/SBAS receivers



# **GNSS LFN** infrastructure requirements

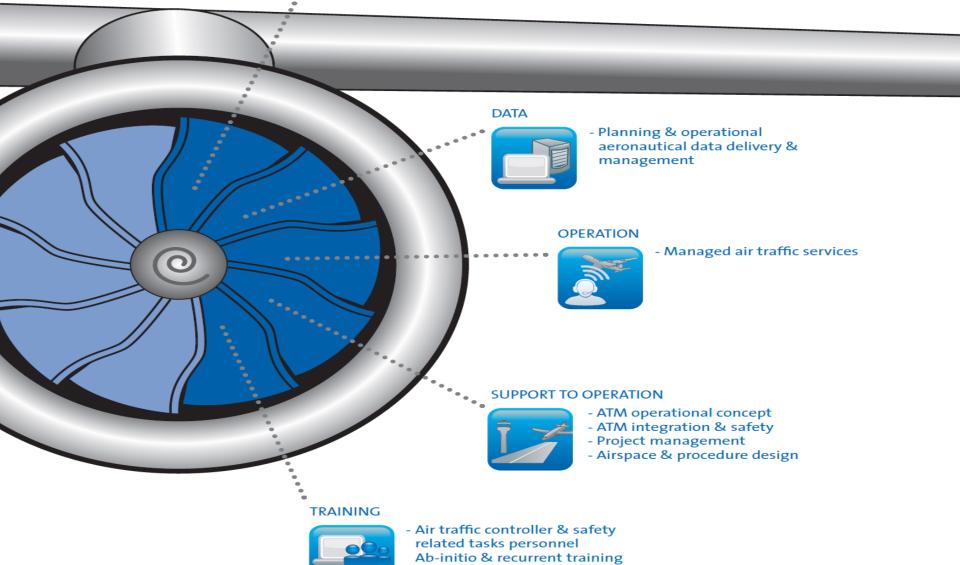
#### 7.2 IMPLEMENTATION CONSIDERATIONS

#### 7.2.1 NAVAID infrastructure considerations

The RNP 0.3 specification is based upon GNSS; its implementation is not dependent on the availability of SBAS. DME/DME based RNAV systems will not be capable of consistently providing RNP 0.3 performance, and States should not plan on implementing RNP 0.3 operations through application of DME/DME-based navigation. States must also not use RNP 0.3 in areas of known navigation signal (GNSS) interference. Operators relying on GNSS are required to have the means to predict the availability of GNSS fault detection (e.g. ABAS RAIM) to support operations along the RNP 0.3 ATS route. The on-board RNP system, GNSS avionics, the ANSP or other entities may provide a prediction capability. The AIP should clearly indicate when prediction capability is required and acceptable means to satisfy that requirement. This prediction will not be required where the navigation equipment can make use of SBAS augmentation and the planned operation will be contained within the service volume of the SBAS signal.

Note.— Should the State permit the operator of an SBAS-equipped aircraft to disregard the requirement for a RAIM prediction when the RNP 0.3 operation occurs in an SBAS service area, then it is recommended the State consider establishing a requirement for that operator to check SBAS NOTAMS prior to the flight to ensure the availability of the SBAS SIS.

ICAO PBN manual, Part C, Chapter 7


### → Request to ESSP to provide RNP 0.3 EGNOS NOTAMs



#### **TECHNOLOGY**



- Communication navigation surveillance engineering & maintenance
- Data processing & Network





14:30-15:45	5:45 Successful EGNOS implementation stories in Aviation (I)				
CIntroduction					
	Luc Tytgat – Director of Pan-European Single Sky (EUROCONTROL)				
Implementation of advanced EGNOS operations in Switzerland Laurent Delétraz – Sales and business development mngr (Skyguid					
	Marc Troller – Navigation Expert (Skyguide)				
🗢 DSNA	A implements PBN with EGNOS				
	Corinne Bousquet – Pôle Navigation (DSNA)				
🗢 Train	ing: The key to success				
	<b>Richard Bristowe</b> – Head of Training (Aviation Southwest)				
∽ Regio	onal aviation, a key market for EGNOS Jaap Horsten – Engineering Consultant (VLM)				
15:45-16:15	Coffee break				



# PBN Implementation for approaches

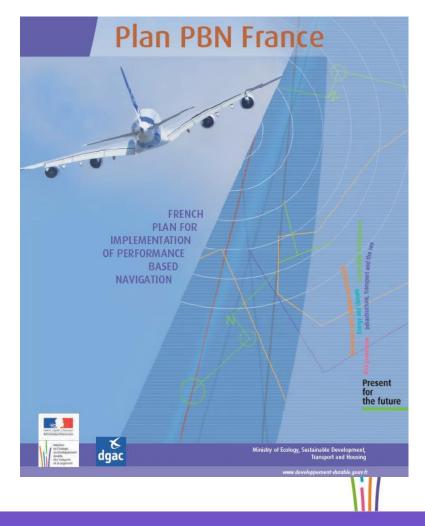
# **FRENCH EXPERIENCE**

Corinne Bousquet DSNA/DTI

Direction générale de l'Aviation civile

Ministère de l'Écologie, du Développement durable, et de l'Énergie

# PBN IMPLEMENTATION DRIVERS IN FRANCE


- ICAO directions towards PBN implementation
  - Improve Safety and Airspace Capacity, Reduction of Environmental impact
  - ICAO ASBUs
- European environment
  - SESAR
  - FABEC

Liberté - Égalité - Fraternité RÉPUBLIQUE FRANÇAISE Ministère de l'Écologie,

> durable et de l'Énergie

du Développement

- Airspace users consultation
  - PBN National implementation plan
  - Open PBN forum with airspace users and airports
- GNSS systems strategy



dgac

# **GNSS SYSTEMS INCLUDED IN DSNA STRATEGY**



# **GNSS SYSTEMS INCLUDED IN DSNA STRATEGY**

- GPS
  - Supports the vast majority of flights today, with GNSS ABAS
    - Includes approaches with vertical guidance, for BaroVNAV equipped users

### EGNOS

- Supports approaches with vertical guidance with performances comparable to ILS Cat I by augmenting GPS
  - Also supports better availability than GPS for conventional approaches
  - Aims to progress in performances and coverage toward EGNOS V3 (> 2020)

### • GBAS

- Aims to support a capacity improvments under Low Visibility Procedures conditions, with GBAS Cat II/III (>2020)
  - GBAS cat I not planned to be deployed operationally in France

### Galileo

- Aims to provide a robust GNSS positioning when integrated with GPS under the multiconstellation concept (> 2020)
  - Expected to be augmented by EGNOS from 2020



Ministère de l'Écologie, du Développement durable et de l'Énergie



# DSNA GNSS STRATEGY 2010 – 2020 TIME FRAME

- Implementation of a first generation GNSS network, based upon:
  - GPS, augmented by airborne techniques ABAS (RAIM, BaroVNAV), deployed through PBN Enroute, Terminal, Approaches
  - EGNOS, improves safety and accessibility of approaches, as a natural complement to ILS Cat I Approaches
- Still important reliance on Conventional navaids
  - but rationalisation initialisation for NDB, VOR, ILS Cat I
    - reduced network concept now explored



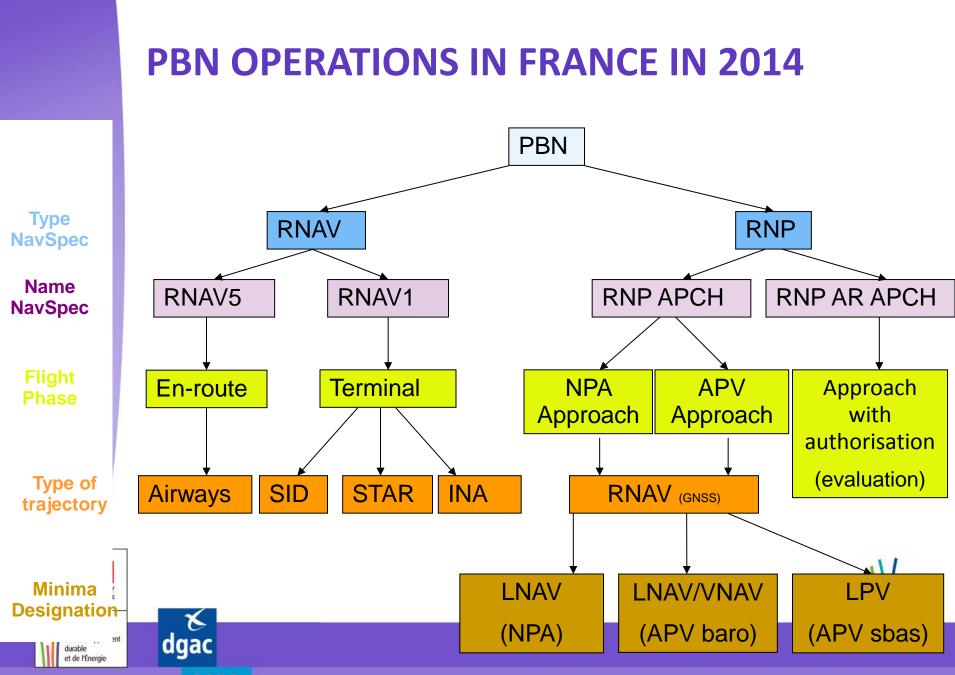
Ministère de l'Écologie, du Développement durable et de l'Énergie



dgac

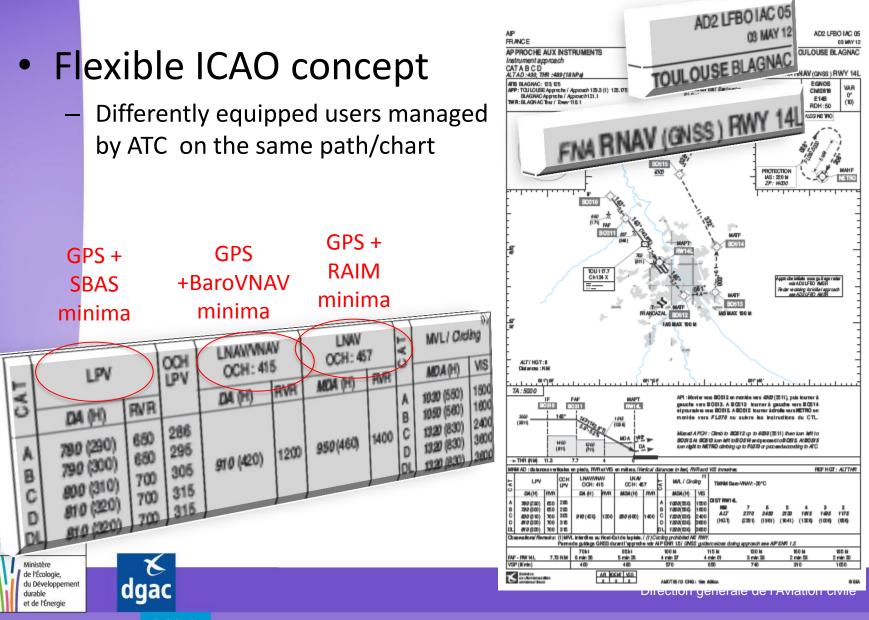
# DSNA NAV SYSTEMS STRATEGY 2020 – 2030 TIME FRAME

- Consolidation of GNSS services with a **second GNSS generation**, based upon:
  - Multiconstellation GNSS, for En route, Terminal, Approaches
    - GPS modernised open signals, dual-frequency L1 L5
    - Galileo Open Service, dual-frequency L1 E5a
  - EGNOS V3, for Cat I Approaches
    - expected to provide the Galileo SoL service regionally from 2020 in addition to GPS L1/L5 augmentation
  - GBAS, for Cat II/III Approaches


### **Continued rationalisation of Conventional systems**



Ministère de l'Écologie, du Développement durable et de l'Énergie




- The rationalisation scale will depend upon deployment of mandate/implementing rules for user avionics
  - Also depends upon the remaining GNSS vulnerabilies mitigation



DSNA





# **PBN APPROACHES OPERATIONAL PHILOSOPHY**

# • Spread widely and clearly information within AIC:

https://www.sia.aviation-civile.gouv.fr/dossier\aicfrance\AIC_A_2012_21_EN.pdf

Direction des Opérations Service de l'Information Aéronautique 8, weine Round GARIOS - BP 40 245 F-33898 MERIGING CEDEX http://www.sia.aviation-civile.gouv.fr	SALES DEPARTMENT           127         :33 (0)5 57 92 56 68           Fax         :33 (0)5 57 92 56 69           130         :sia-commercial           @aviation-chils.gouv.fr           TECHNICAL SERVICE           127         :33 (0)5 57 92 57 57           Fax         :33 (0)5 57 92 57 77           sFA         :LFFAYNYX	AIC A 21/12 FRANCE PUB : SEP 20
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------------

SUBJECT: Implementation of RNP APCH type instrument approach procedures commonly called RNAV(GNSS) approaches - Correct version.

#### This AIC cancels and replaces AIC 06/12

1 INTRODUCTION

For the application of provisions of resolution A37/11 from the ICAO, aiming at covering all IFR-certified runway ends with approach procedures using GNSS, including with vertical guidance where possible, the DGAC (French Civil Aviation General Directorate) publishes many approach procedures giving rise to charts under the RNAV (GNSS) title. These publications comply with RNP APCH type navigation specification, as defined in Performance-Based Navigation Manual (PBN), Doc 9613 of ICAO.

The GNSS systems concerned by this AIC are based on the possible use of the GPS constellation, as well as on the following two ICAO reinforcement systems:

- ABAS: Airborne Based Augmentation System,
- SBAS: Satellite Based Augmentation System.



Ministère de l'Écologie, du Développement durable et de l'Énergie



Direction générale de l'Aviation civile

# MAIN PBN CHALLENGE FOR APPROACHES TODAY

Modernizing/rationalizing French landing system infrastructure, thanks to EGNOS performance equivalent to ILS Cat I, in particular

- GPS only equipped users also included in this plan
- improve safety, airport accessibility
- reduce ANSP's costs (technology transition)
- PBN target for primary runways:
  - Good quality backup to ILS (outages, maintenance, renewal ,etc...)
- PBN target for secondary runways:
  - More direct paths, increased safety (vertical guidance in final), increased airport accessibility vs. conventional navaids
  - PBN target for about 50 small/medium airports:
    - Cut landing infrastructure costs (ILS Cat I) by transitioning to PBN



Ministère de l'Écologie, du Développement durable et de l'Énergie

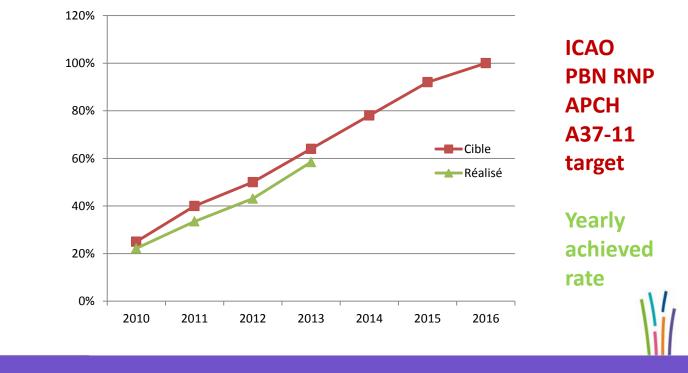


Direction générale de l'Aviation civile

# **ACTIONS TAKEN**

- Identify all areas of work to support PBN implementation in Terminal areas
  - Safety cases, charting, AIS, ATC training, phraseology, NOTAM, GNSS legal recording tools, national regulations, Flight check, Flight planning, Management of Interference ...
- Set up National WGs combining experts of different domains (public & industry)
  - Analyse of issues, solutions acceptable and adapted to all stakeholders
- Include all airspace users & Industry to reach agreement on proposed solutions



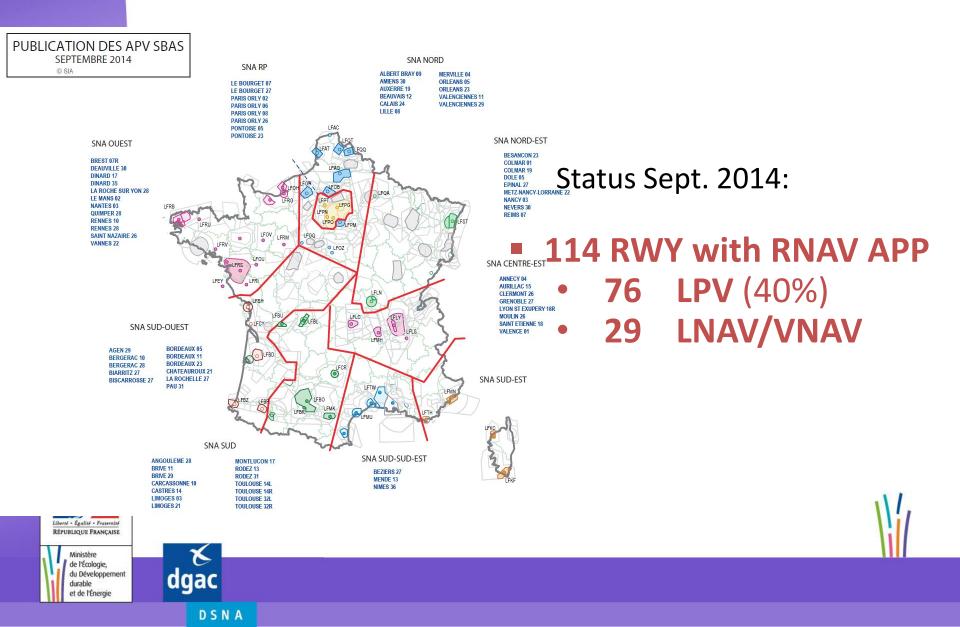

Ministère de l'Écologie, du Développement durable et de l'Énergie

dgac

Direction générale de l'Aviation civile

# **PBN APPROACHES STATUS**

- Approx. 200 runway ends included in France RNP APCH plan
- RNP APCH with LNAV implemented since 2004, LPV since 2011; LNAV/VNAV since 2012
  - Military airports also equipped now with LNAV & LPV






Ministère de l'Écologie, du Développement durable et de l'Énergie

dgac

# **PUBLISHED PBN PROCEDURES**



# **ILS** rationalisation plan



et de l'Énergie

DSNA

#### **2016 ILS reduced network**

Airports where the existing ILS Cat I is proposed to be replaced by a RNP APCH



# NEW PBN AREAS FOR APPROACHES WORKED OUT NOW

# RNP approach connected to xLS

• xLS = Instrument LS, GBAS LS, SBAS LS,...

# Several technologies or concepts investigated

- Operational interest for some environmentaly and obstacle constrained airports,
- Visual RNAV, RNP APCH + RF , RNP AR APCH



Ministère de l'Écologie, du Développement durable et de l'Énergie



dgac

# **GNSS PROCEDURES FOR ROTORCRAFT**

- Lot of interest from the helicopters community
- Much more interest in LPV avionics
  - High flexibility of LPV guidance (slope)
  - No need of helipad or runways to fly LPV
  - Associated with PINS procedure



de l'Écologie, du Développement

durable et de l'Énergie daac

DSNA

# FRENCH CAA CURRENT POSITION

- Only accepted : — LNAV, LPV, PINS on aerodrome with ATS
- Forseen after conduction of trial
   PINS (LNAV or LPV) on hospital
- Still issues to solve
  - Minima in case of steep angle in LPV final
  - Operational validation process to define





### SOON : WHAT TO DO TO REACH CAT I SBAS APP?

- Wait for appropriate EGNOS release !
- Re design intermediate, final and straight missed approach of existing LPVs

 New critria available in PANS OPS from November 2014

- Compute new OCH
- If acceptable :
  - DH of 200ft available (RVR 550m)



Ministère de l'Écologie, du Développement durable et de l'Énergie

daac

# WHAT ABOUT AIRLINES TO FLY CAT I SBAS APP?

- If operational approval for LPV 250ft
  - No need for supplementary approval of airline to reach 200ft (at least in France)

# BUT

- Some Aircraft certified for LPV are limited to 250ft (AFM limitation) because their TAWS function does not take into account the LPV for the Excessive Glide slope deviation alert.
- Modification of the TAWS and additional certification would be needed to reach 200ft.



Ministère de l'Écologie, du Développement durable et de l'Énergie

dgac

# PBN APPROACHES ROADMAP LESSONS LEARNED

- It's there, use it!
  - Yes... but still a lot of work required in the background within strongly regulated environments like Europe, be aware!
- Coordination is key
  - Mixing national experts of different topics
  - Involving Industry, Airspace users, Airports, Regional organisations
  - Synchronisation of user equipment with procedure design is key

Coordination with airlines is a key element

Flexible ICAO concept of a single approach chart is very useful



Ministère de l'Écologie, du Développement durable et de l'Énergie



### **PBN APPROACHES OPERATIONAL LESSONS LEARNED**

- EGNOS LPV are high performance approaches, and highly appreciated by equipped users, even wrt ILS Cat I
- LNAV and LNAV/VNAV also appreciated, wrt VOR/NDB/Circling type approaches, by equipped users

#### > But have a lower level of performance wrt LPV:

> Higher approach minima due to less performing lateral and vertical guidance

- > Issue of « RAIM holes » when RNP APCH is the prefered approach (e.g. Nice airport)
  - daily LNAV and LNAV/VNAV un-availabilities may exist depending upon the avionics,
  - it is not possible to make ATC aware of on-board LNAV and LNAV/VNAV unavailability

#### > Lower safety level:

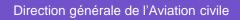
- lack of vertical guidance for LNAV,
- QNH mis-setting events from the ground or airborne side have been reported for LNAV/VNAV



Ministère de l'Écologie, du Développement durable et de l'Énergie



DSNA


### **EXPECTED ADDITIONAL GUIDANCES FROM ICAO**

### Approaches

The experience gained by implementing on a large scale LNAV, LPV, and LNAV/VNAV approaches highlighted several areas where additional guidance will be useful :

- PBN phraseology (Doc 4444):
- PBN procedure charting (Annex 4 and associated document),
- Safety case methodology (Doc 9906),
- GNSS signal qualification (Annex 10),
- PBN initial approach (to intercept ILS) (Doc 8168),
- DME/DME usage (for RNP) (Doc 9613),
- WGS 84 vs. alternative reference frames (Doc 9674 and 9906).





### **HOW TO STEER USER INTEREST TOWARDS EGNOS?**

- Identify the region different communities and their potential interest in EGNOS:
  - General aviation
  - Business aviation
  - Taxi and regional airlines
  - Helicopters
  - Transport aviation
- Adapt the actions and communication depending on the different level of interest and timelines of expected benefits
- > Avoid direct confrontation between « in favor » and « against »communities.

FABEC

- Aim is to show that EGNOS is giving significant benefits now to segments of the region users,
- and that long term avionics deployment will facilitate the transition of users
   reluctant to retrofit at this stage.

Direction Générale de l'Aviation Civile

RÉPUBLIQUE FRANÇAISE Ministère de l'Écologie,

rté + Égalité + Fraternit

du Développement

durable et de l'Énergie dgac

Ministère de l'Écologie, du Développement durable, et de l'Énergie



# Thank you for your attention

# **Any question?**

Direction générale de l'Aviation civile

Ministère de l'Écologie, du Développement durable, et de l'Énergie



# AGENDA (14:30 – 16:15)

14:30-15:45	Successful EGNOS implementation stories in Aviation (I)
∽ Intro	oduction
	Luc Tytgat — Director of Pan-European Single Sky (EUROCONTROL)
∽Imp	lementation of advanced EGNOS operations in Switzerland Laurent Delétraz – Sales and business development mngr (Skyguide)
	Marc Troller – Navigation Expert (Skyguide)
∽ DSN	A implements PBN with EGNOS
	<b>Corinne Bousquet</b> – Pôle Navigation (DSNA)
🗢 Trair	ning: The key to success
	<b>Richard Bristowe</b> – Head of Training (Aviation Southwest)
Regional aviation, a key market for EGNOS	
	<b>Jaap Horsten</b> – Engineering Consultant (VLM)
15:45-16:15	Coffee break



# TRAINING: THE KEY TO SUCCESS

# Richard Bristowe, Aviation South West

EGNOS Service Provision Workshop Lisbon, 7-8 October 2014



Aviation South West

- The Flight School
- ACCEPTA and the partnership with Exeter airport
- Regulatory issues
- Flight validation experiences
- One final task
- Lessons learnt and future actions

# **The Flight School (i)**

Aviation South West

- Aviation South West is a Flight Training Company based at Exeter International Airport in the South West of England
- Training of
  - Private and Commercial Pilots and
  - Flight Instructors
- Provision of EASA Examiner Seminars
- Mixed fleet of single and twin-engined light aircraft



EGNOS Service Provision Workshop 2014

### **The Flight School (ii)**

Aviation South West

• Early 2000s: ASW equipped its fleet with RNAV LNAV (Garmin)

– Installations were granted EASA approval in 2008.

- Then UK CAA selected six airports to trial LNAV APCH procedures.
  - ASW was asked to carry out the flight validations at Exeter Airport (one of the trial airports) and subsequently at Plymouth Airport.
  - ASW Instrument Rating training manual was amended to include training pilots to fly LNAV approaches and approved by the regulator (CAA).



EGNOS Service Provision Workshop 2014

# ACCEPTA and the partnership with Exeter (i) Aviation South

- Joint bid with Exeter Airport for ACCEPTA funding by 2011:
  - ASW to upgrade two aircraft
  - Exeter to upgrade its existing LNAV approaches to LPV.

### The joint bid was successful



**EGNOS Service Provision Workshop 2014** 

Lisbon, 7-8 October 2014

South West

# ACCEPTA and the partnership with Exeter (ii) Aviation South

- Exeter Airport is a Regional Airport in the South West of England.
  - 2007: >1 million passengers.
  - 2013: 741,465 passengers, (5.7% increase from 2012)
- Scheduled and holiday charter flights within the UK and Europe.
- Main Operators:
  - FlyBe, Thomson, Thomas Cook, Air Malta, Transatlantic bizjets, Isles of Scilly, Air Taxi Operators and Military and Civil training flights.
- Approaches: ILS, NDB, SRA, LNAV and now LNAV/VNAV and LPV.



**EGNOS Service Provision Workshop 2014** 

Lisbon, 7-8 October 2014

West

#### ACCEPTA and the partnership with Exeter (iii) Aviation South West

- For Aviation South West:
  - Replacement of the existing GPS equipment and aerials (STCs available)
  - Reduced panel space so there was a lot of ironmongery work
  - Adding LNAV to the Frasca simulator was straightforward but LPV glide-path was unreasonable.
- For Exeter Airport:
  - Existing CAT 1 ILS and LNAV on both runways
  - CAA's published Policy Statement (June 2009) on the Validation of Instrument Flight Procedures.
  - The regulator required:
    - A full resurvey of the airport environs and
    - Fully encoded data source as part of the validation

**EGNOS Service Provision Workshop 2014** 

### Was the regulator right?

- Flight validation must use a datacard with the FAS datablock encoded.
- NOTAMed procedures were not allowed by the CAA for validation
- The UK Air Accident Investigation Board published:

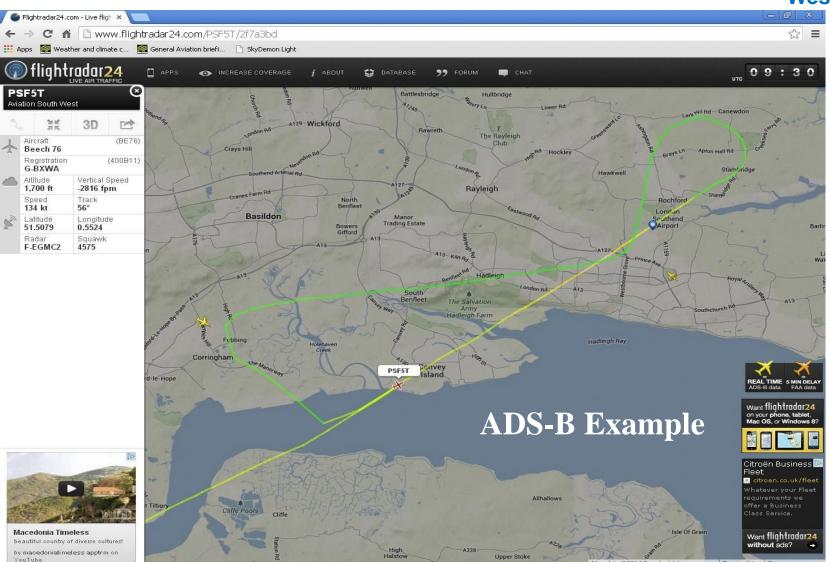
*"Misuse of the GPS is a contributory factor in the majority of light aircraft accident/incidents."* 

Given the lack of mandatory training in the use of aircraft GPS equipment, and just how close to the ground an LPV brings the pilot, the need for a trial datacard - and the need for proper training - cannot be denied.

### So what about the survey?

- We sought evidence to show that the time and expense of a complete new survey was unnecessary.
- We even researched what the FAA views were, unfortunately (for us), they reported that:
- "In almost all cases of problems with LPV approaches the fault lay with the use of legacy survey data."

So - as has occurred time after time on this project, our regulator has been absolutely right!


# **The Flight Validation experience (i)**

Aviation South West

- Datacard cost = card cost + cost per approach encoded.
  - ✓ Combine Exeter, Bristol and Southend APCHs onto one card
- Regulator's requirements: aircraft equipped and approved for LPV + ADS-B transponder + data-logger.
  - ✓ Aviation South West's BE76 successful in tendering to all three airports
- Separate statements of work agreed with the regulator for each scenario
  - $\checkmark$  key element was the vertical component from FAF to MA:
    - 1. Normal to check the equipment display, the ILS lookalike and the missed approach procedure
    - 2. Flying below the glidepath at half scale fly-up to check for obstacles.
    - 3. Flying to 50' above the runway to confirm the PAPIs and other indications held true and steady.

# **The Flight Validation experience (ii)**

#### Aviation South West



#### **EGNOS Service Provision Workshop 2014**

### **The Flight Validation experience (iii)**

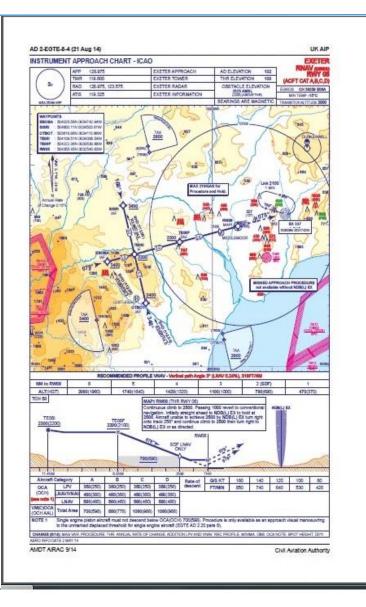
Aviation South

### **ILS Look-alike**



#### **EGNOS Service Provision Workshop 2014**

### **The Flight Validation experience (iv)**


Aviation South West

### **Datalogger file**



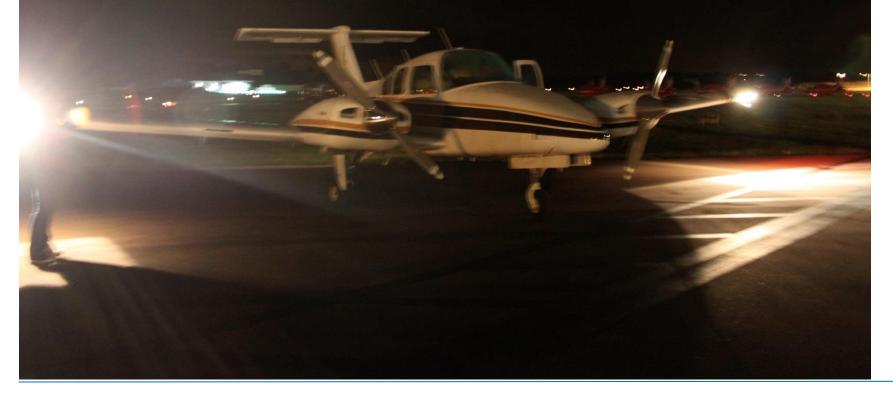
#### **EGNOS Service Provision Workshop 2014**

### **The Flight Validation experience (v)**



### **The Result!**

#### **EGNOS Service Provision Workshop 2014**


#### Lisbon, 7-8 October 2014

Aviation South West

### **One final task (i)**

Aviation South West

### First Operational LPV ever flown in UK 21st Aug 01:02 BST (00:02 GMT)



**EGNOS Service Provision Workshop 2014** 

### **One final task (ii)**

Aviation South West

### **During first week of publication:**

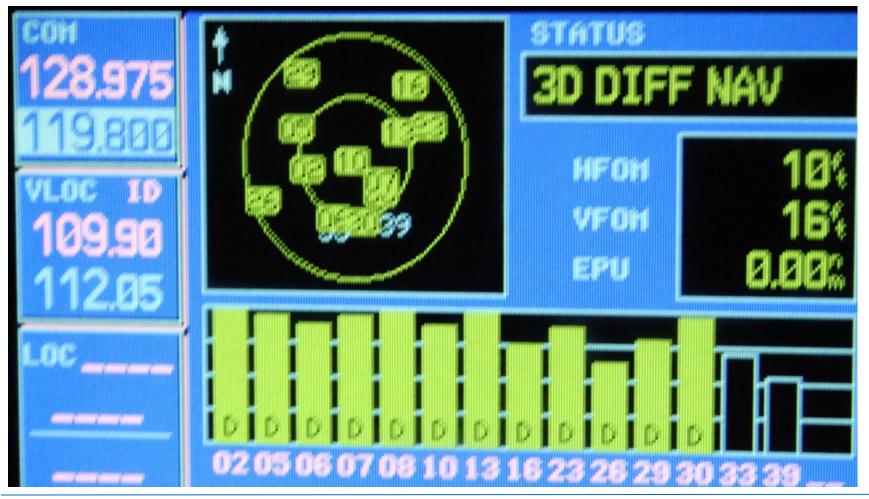
### 11 commercial aircraft (from 146s to 757s) flew to Exeter to train on the LPV approach



**EGNOS Service Provision Workshop 2014** 

### So – What are the issues?

### **Approach requirement is +/- half scale deflection yet**




Oh gosh!

#### **EGNOS Service Provision Workshop 2014**

### Lessons learnt and future challenges (ii)

### En route and terminal area wing tip clearance is generally 5 nautical miles, yet:



#### **EGNOS Service Provision Workshop 2014**

#### Lisbon, 7-8 October 2014

**Aviation** 

South

### Lessons learnt and future challenges (iii)

Aviation South West

### There is a real danger of complacency



**EGNOS Service Provision Workshop 2014** 

### We believe that *training* – of pilots, of instructors and of examiners – is key to the successful implementation of LPV approaches. Happily we are not alone:-



European Aviation Safety Agency — Rulemaking Directorate

Notice of Proposed Amendment (NPA) 2013-25

Revision of operational approval criteria for performance-based navigation (PBN) RMT.0256 & RMT.0257 (MDM.062(A) & (B)) - 20.12.2013

### Lessons learnt and future challenges (v)

Aviation South West

- At Aviation South West we have a **comprehensive training programme** covering both **theoretical** and **practical** training.
- The practical element involves both **simulator** and **aircraft flights**. This has proved highly successful for students, instructors and examiners alike.

Aviation South West Ltd Instrument Rating Manual 2.1 RNAV Supplement Page 63 Last updated 18/4/2014 GNSS RNAV Training Training requirements Theory

### Lessons learnt:

1. Establish a close relationship with your regulator. It can make all the difference.

2. Group together with other airports to save costs.

3. You don't need the expense of a calibrator aircraft for the flight validation.

4. Training is essential - NPA2103-25 will make it mandatory, but don't wait for that.

### Lessons learnt and future challenges (vii)

Aviation South West

### and

5. Once Operators get the hang of it they love it:-



#### **EGNOS Service Provision Workshop 2014**

### Lessons learnt and future challenges (viii)

# But even more than that, EGNOS enables approaches that you would not have thought possible:



#### **EGNOS Service Provision Workshop 2014**

Lisbon, 7-8 October 2014

**Aviation** 

South West



Aviation South West



# **Aviation South West** Big enough to matter; small enough to care

CORSAIR



#### AGENDA (14:30 – 16:15)

14:30-15:45	Successful EGNOS implementation stories in Aviation (I)
✓ Intre	oduction
	Luc Tytgat – Director of Pan-European Single Sky (EUROCONTROL)
⊂~Imp	lementation of advanced EGNOS operations in Switzerland Laurent Delétraz – Sales and business development mngr (Skyguide)
	Marc Troller – Navigation Expert (Skyguide)
∽ DSN	IA implements PBN with EGNOS
	Corinne Bousquet – Pôle Navigation (DSNA)
🗢 Trai	ning: The key to success
	<b>Richard Bristowe</b> – Head of Training (Aviation Southwest)
🗢 Reg	ional aviation, a key market for EGNOS
	Jaap Horsten – Engineering Consultant (VLM)
15:45-16:15	Coffee break



## Regional Aviation, a key market for EGNOS

#### Implementation of EGNOS in the Fokker 50 by Jaap Horsten & Yonatan Tekle



# **VLM Airlines N.V.**

- VLM Airlines: Regional, Europe
- Base: Antwerp, Belgium
- Fleet: 12 Fokker 50
- Business:
- ACMI, Charter (30-40 destinations)





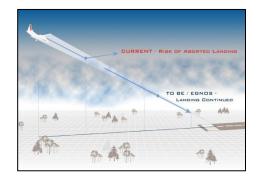
Fokker 50: probably the best turboprop ever built



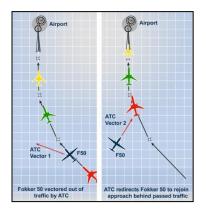
#### Network






# **EGNOS project Goals**

- To continue the success of the VLM Airlines Fokker 50 operation
- To become P-RNAV approved
- To equip the Fokker 50 aircraft to achieve EGNOS-based LPV approaches
- To gain Operational approval for LPV



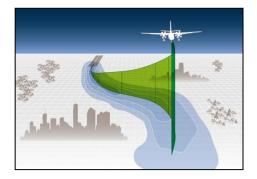

# **Anticipated Benefits**

#### 1. Efficiency & Operational benefits

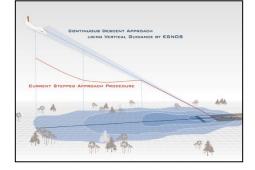


EGNOS Versus NPA & ILS back-up




EGNOS – Avoided: ATC priority to other traffic

#### 2. Flight Safety improvements


- The F50 EGNOS avionics and PBN concept increase the level of safety due to:
- 1. Vertical guidance to the runway with a reduction of accident rate by 80% (CFIT)
- 2. Increased situational awareness
- 3. Reduction in human errors and its consequences
- 4. Higher navigation accuracy with lower risk of traffic conflicts
- 5. Single integrated system (FMS linked to A/P and EFIS), with reduced workload during critical phases of flight

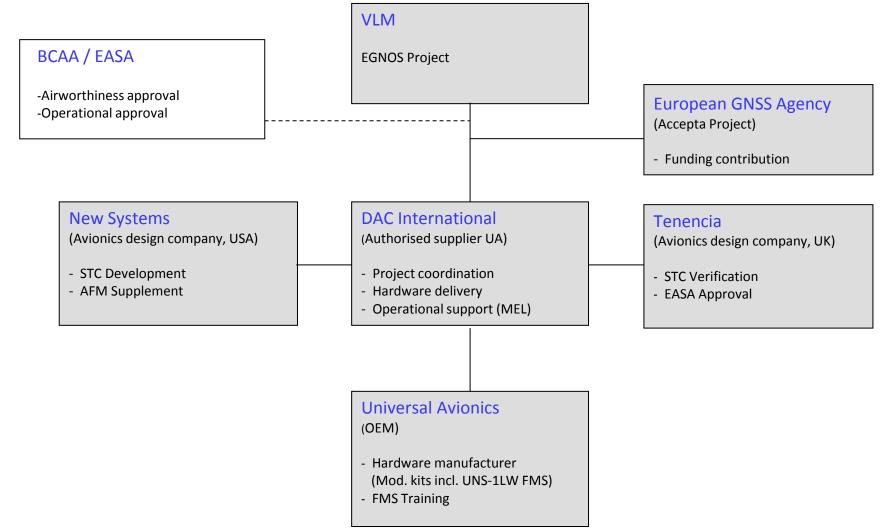
#### No compromise to flight safety

#### 3. Environmental benefits



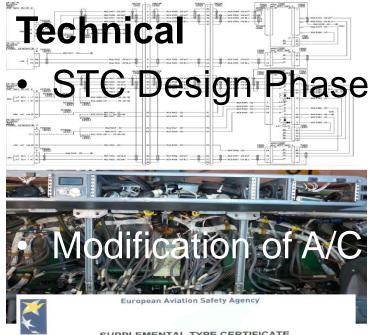
EGNOS – Improved noise abatement footprint




EGNOS – Continuous Descent Approaches (CDA) capability

#### 4. Improved Cost Efficiency






# **Project Organisation**





# **Implementation steps**



#### SUPPLEMENTAL TYPE CERTIFICATE

#### 10033789

This Supplemental Type Certificate is issued by EASA, acting in accordance with Regulation (EC) No. 216/2008 on behalf of the European Community, its Member States and of the European third countries that participate in the activities of EASA under Article 66 of that Regulation and in accordance with Commission Regulation (EC) No. 1702/2003 to



and certifies that the change in the type design for the product listed below with the limitations and conditions specified meets the applicable Type Certification Basis and environmental protection requirements when operated within the conditions and limitations specified below:

> Original Product TC Number : EASA.A.036 TC Holder : FOKKER SERVICES Model : F27 MK 050 & F27 MK 0502

Description of Design Change: Installation of a Single UNS-1Lw Universal Avionics Flight Management System.

#### **EASA Certification Basis:**

The Contribution Basis for the original product remains applicable to this certificate/ approval. The requirements for environmental protection and the associated certificated noise and/ or emissions levels of the original product are unchanged and remain applicable to this certificate/ approval.



Procedure Development





Belgian Civil Aviation Authority Technical Directorate

Cily Hrium Rive du Progrès 56 6é etage – Locker 6264 12'0 Smsaels Tel., 02 277 43 11 - Fax ; 01 277 42 59

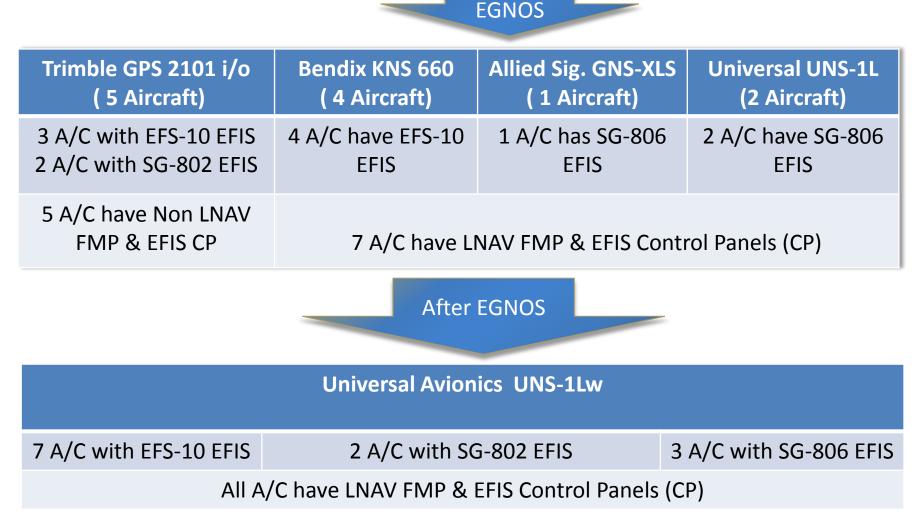
#### Operational Approvation

e-mail : inrocen.munyalicanje@mooilf.fgov.be

Enterprize Number 0 308 357 652

rietro: Poster train: North station Lus and tram stop: North station






- Project approval within VLM (only after being awarded with European funding through ACCEPTA).
- Fokker 50 Airworthiness approval (mature aircraft, first generation EFIS).
- To perform a complex modification (with unexpected design issues), while airline maintenance and operations continue.
- Operational approval for P-RNAV and for LPV approaches.
- Fokker 50 fleet with various navigation equipment



# **VLM Fokker 50 Avionics**

Before



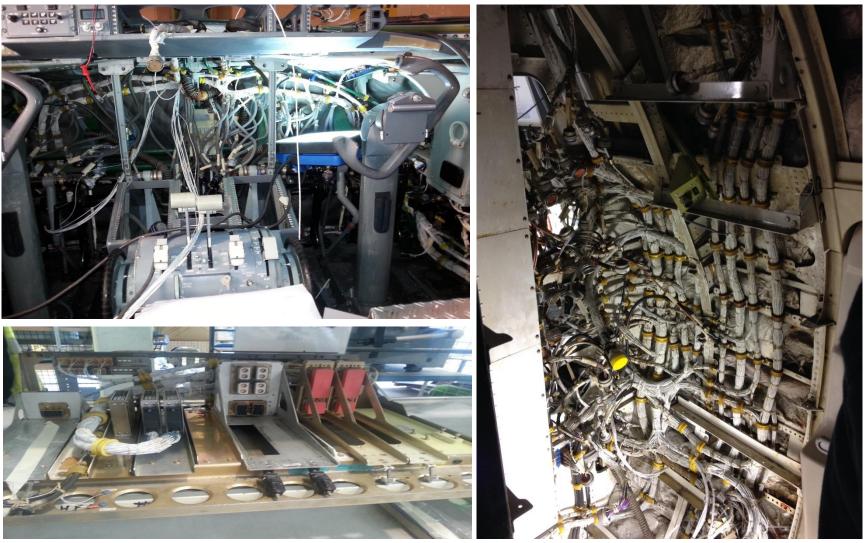


# Fokker 50 EGNOS modification

 Single Universal UNS-1Lw FMS + LP/LPV Monitor






(WAAS/ EGNOS) GPS Antenna (2x)



FMS Integration kit



## **The modification**





# **Technical Challenges**

- Integration kit (wire finishing, wiring adjustments)
- Differences between Fokker WM and A/C physical situation
- All FMS annunciators are on all the time
- Pseudo-ILS (P-ILS) not working
- No Vertical deviation on ND in both FMS and P-ILS mode
- No FD coupling in normal FMS mode
- No waypoints shown on the ND
- No waypoint identifiers (shown in numbers)
- Distance to waypoints shown incorrectly
- No FMS bearing pointer
- FMS-SG communication issue (no VNAV display on PFD and ND)
- PFD shows VLF instead of FMS when LNAV selected
- Amber warning light (AFCS?) displayed on PFD when LNAV selected



# **Project Status**

Airworthiness

- STC developed (minor changes required for different a/c) Dec 2013
- Modification 1st a/c (EFS-10, operates in single FMS)
- Modification 2nd a/c (SG-802, operates in single FMS)
- First EASA certification flight
- Second EASA verification flight
- EASA STC approval expected

Operational

- Procedures developed for P-RNAV and LPV
- Training program developed
- P-RNAV approval to be received
- LPV approval expected

Dec 2013 Jul 2014 Oct 2014 Feb 2015

Jan 2014

Jun 2014

Jul 2014

Oct 2014

Nov 2014





- Fokker 50 almost ready for EGNOS based LPV.
- VLM operation approval expected thereafter.
- LPV approach on ANR rwy 11 (VLM base) under development.

#### Regional Aviation is a key market for EGNOS and VLM is anticipating on LPV opportunities in its European ACMI/Charter network

# coffee break

# EGNOS survey open

http://egnos-portal.gsa.europa.eu/egnos-users-satisfaction-survey

# The EGN S Service Provision workshop









## AGENDA (16:15 – 17:15)

#### 16:15-17:15 Successful EGNOS implementation stories in Aviation (II)

WAAS' successful implementation and return on experience in the US Bill Wanner – WAAS program Test Director (FAA)

Success on A-350 EGNOS flight test Jean-Christophe Lair – Test Pilot (AIRBUS)

Practical EGNOS avionics solutions
Alain Beaulieu – GPS Program and Product Mngr (CMC Electronics)

17:15-17:30 EGNOS awards and Conclusions



## AGENDA (16:15 – 17:15)

#### 16:15-17:15 Successful EGNOS implementation stories in Aviation (II) WAAS' successful implementation and return on experience in the US **Bill Wanner** – WAAS program Test Director (FAA) ∽ Success on A-350 EGNOS flight test Jean-Christophe Lair – Test Pilot (AIRBUS) Practical EGNOS avionics solutions Alain Beaulieu – GPS Program and Product Mngr (CMC Electronics) 17:15-17:30 **EGNOS** awards and Conclusions



### AGENDA (16:15 – 17:15)

an overerience in the UC
n on experience in the US Director (FAA)
RBUS)
Product Mngr (CMC Electronics)

# Wide Area Augmentation System (WAAS) Overview

Presentation to EGNOS on WAAS successful implementation and return on experience in the US

By: Bill Wanner, Navigation Branch Manager FAA William J. Hughes Technical Center

Date: October 8, 2014



# Wide Area Augmentation System

- WAAS includes ground based and space based elements that augment the GPS Standard Positioning Service (SPS)
- WAAS provides availability, accuracy and integrity allowing for uniform and high quality worldwide air traffic management
- WAAS provides coverage over North America, with a precision approach capability at over 4,000 runway ends in the United States and Canada



3 Geostationary Satellite Links



2 Operational Control Centers



38 Reference Stations



3 Master Stations



6 Ground Earth Stations





# **WAAS Benefits**

- WAAS-provided messages improve the accuracy, availability and safety of GPS-derived position information
- WAAS results in safety and capacity improvements in the National Airspace System (NAS)
- WAAS will reduce FAA operations costs by enabling the decommissioning of numerous ground-based navigation aids
  - All new CAT I Approaches in the NAS shall be WAAS LPV Approaches
  - FAA committed to making a decision on the drawdown of CAT I ILS in 2016

WAAS Overview October 2014



# **WAAS Benefits**

- WAAS provides a cost-effective means of integrating a precision approach capability into the cockpit
- Over 4,000 WAAS procedures are available with many published at runways that previously had no precision approach capability
- WAAS has many users outside of aviation, despite being designed for aviation use

- Mapping, surveying, and boaters are the largest user base



#### • Phase I: IOC (July 2003) Completed

- Included development of a robust safety architecture
- Included establishment of WAAS expert panel to evaluate potential integrity threats

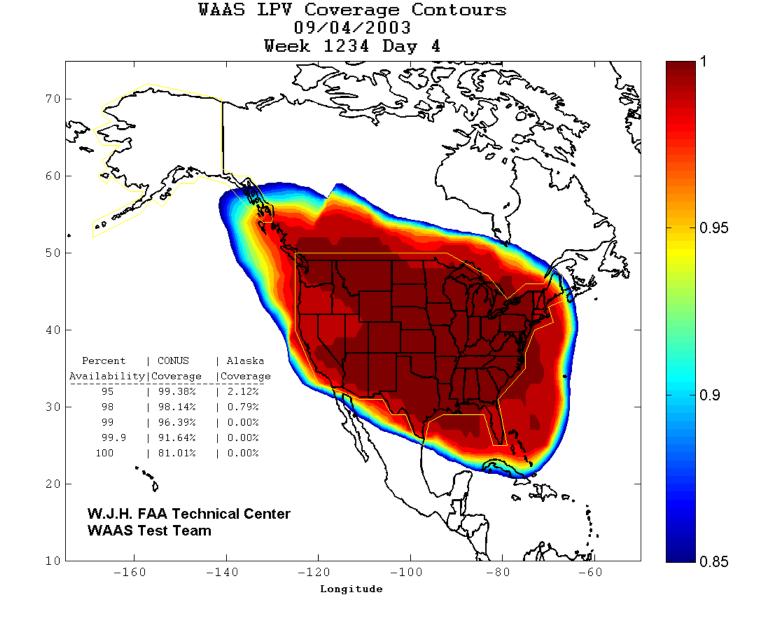
#### Phase II: Full LPV (FLP) (2003 – 2008) Completed

- Completed a Safety Risk Management Decision (SRMD) to support LPV-200 (VAL of 35m)
- Expanded WAAS coverage to Mexico and Canada while modifying the System to address observed lonospheric threats

- Completed System updates to improve performance during moderate ionospheric activity
- Supported continuous monitoring of system data that contributes to continued integrity assurance
- Began transition of Second Level Engineering from contractor based to organic FAA capability
- Phase IV: Dual Frequency (L1,L5) Operations (2014 2044)
  - Includes the transition from use of L2 to L5 in WAAS reference stations
  - Infrastructure modifications to support future L1/L5 user capability
  - Support sustainment of WAAS GEOs



#### • Phase I: IOC (July 2003) Completed


- Included development of a robust safety architecture
- Included establishment of WAAS expert panel to evaluate potential integrity threats

#### Phase II: Full LPV (FLP) (2003 – 2008) Completed

- Completed a Safety Risk Management Decision (SRMD) to support LPV-200 (VAL of 35m)
- Expanded WAAS coverage to Mexico and Canada while modifying the System to address observed lonospheric threats

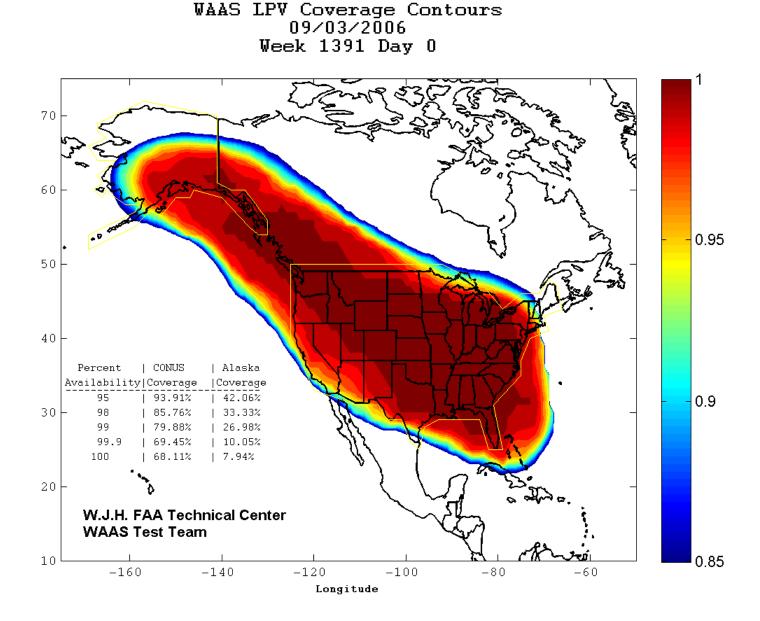
- Completed System updates to improve performance during moderate ionospheric activity
- Supported continuous monitoring of system data that contributes to continued integrity assurance
- Began transition of Second Level Engineering from contractor based to organic FAA capability
- Phase IV: Dual Frequency (L1,L5) Operations (2014 2044)
  - Includes the transition from use of L2 to L5 in WAAS reference stations
  - Infrastructure modifications to support future L1/L5 user capability
  - Support sustainment of WAAS GEOs



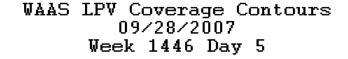


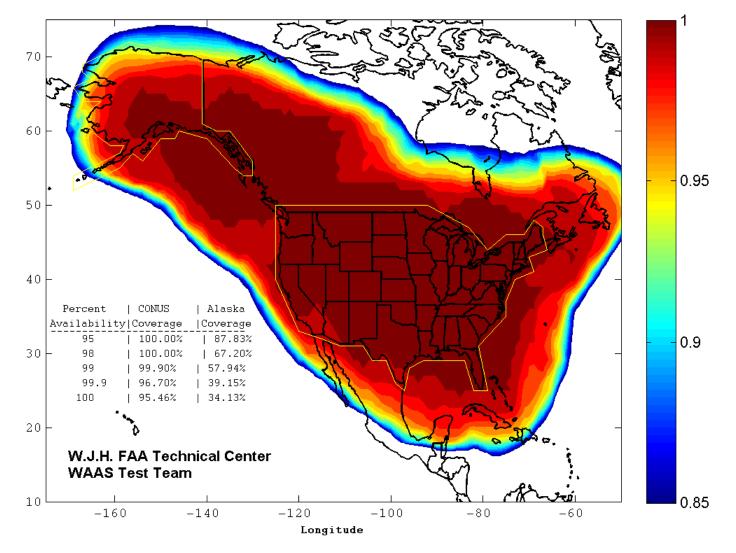


#### Phase I: IOC (July 2003) Completed


- Included development of a robust safety architecture
- Included establishment of WAAS expert panel to evaluate potential integrity threats

#### Phase II: Full LPV (FLP) (2003 – 2008) Completed


- Completed a Safety Risk Management Decision (SRMD) to support LPV-200 (VAL of 35m)
- Expanded WAAS coverage to Mexico and Canada while modifying the System to address observed lonospheric threats


- Completed System updates to improve performance during moderate ionospheric activity
- Supported continuous monitoring of system data that contributes to continued integrity assurance
- Began transition of Second Level Engineering from contractor based to organic FAA capability
- Phase IV: Dual Frequency (L1,L5) Operations (2014 2044)
  - Includes the transition from use of L2 to L5 in WAAS reference stations
  - Infrastructure modifications to support future L1/L5 user capability
  - Support sustainment of WAAS GEOs







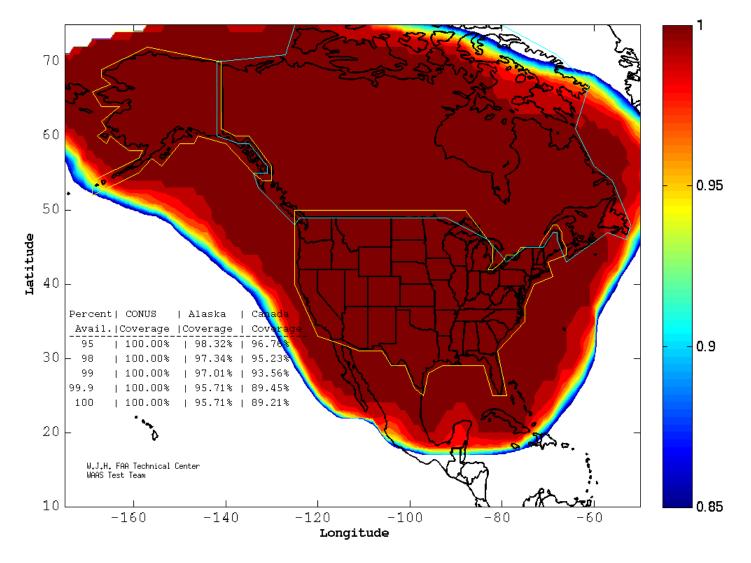






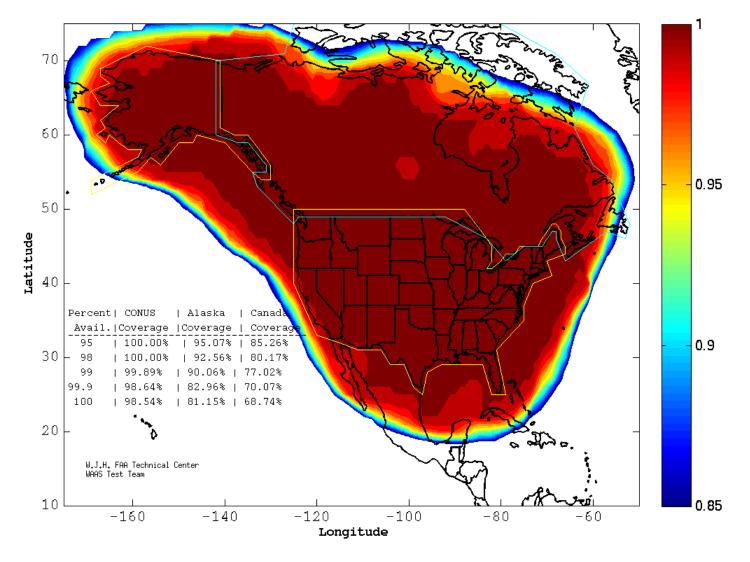
#### • Phase I: IOC (July 2003) Completed

- Included development of a robust safety architecture
- Included establishment of WAAS expert panel to evaluate potential integrity threats


#### • Phase II: Full LPV (FLP) (2003 – 2008) Completed

- Completed a Safety Risk Management Decision (SRMD) to support LPV-200 (VAL of 35m)
- Expanded WAAS coverage to Mexico and Canada while modifying the System to address observed lonospheric threats

- Completed System updates to improve performance during moderate ionospheric activity
- Supported continuous monitoring of system data that contributes to continued integrity assurance
- Began transition of Second Level Engineering from contractor based to organic FAA capability
- Phase IV: Dual Frequency (L1,L5) Operations (2014 2044)
  - Includes the transition from use of L2 to L5 in WAAS reference stations
  - Infrastructure modifications to support future L1/L5 user capability
  - Support sustainment of WAAS GEOs




WAAS LPV Coverage Contours 09/24/14 Week 1811 Day 3





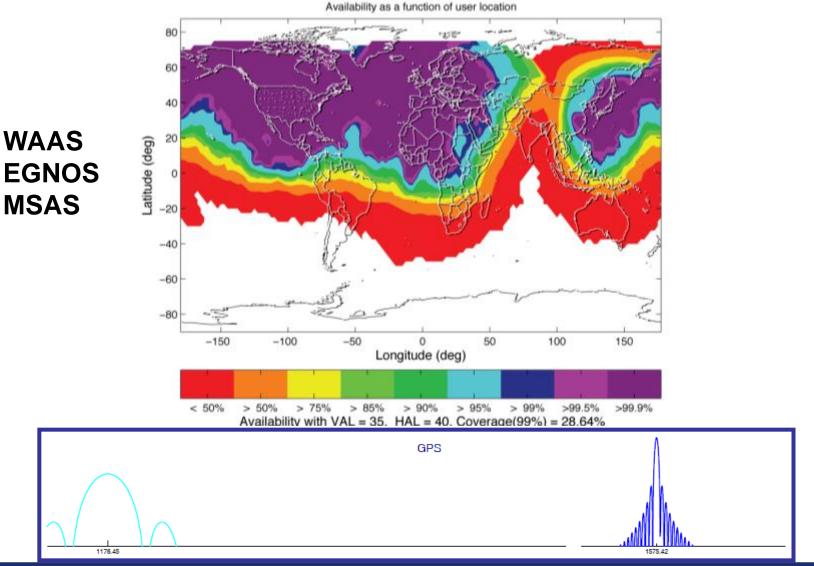
WAAS LPV200 Coverage Contours 09/24/14 Week 1811 Day 3





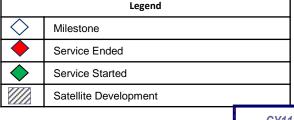
#### • Phase I: IOC (July 2003) Completed

- Included development of a robust safety architecture
- Included establishment of WAAS expert panel to evaluate potential integrity threats

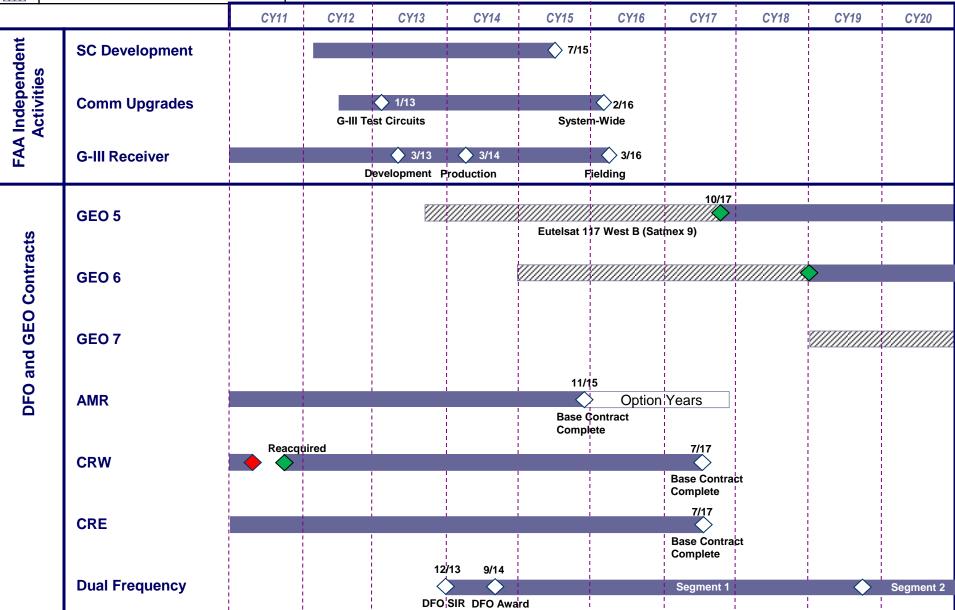

#### • Phase II: Full LPV (FLP) (2003 – 2008) Completed

- Completed a Safety Risk Management Decision (SRMD) to support LPV-200 (VAL of 35m)
- Expanded WAAS coverage to Mexico and Canada while modifying the System to address observed lonospheric threats

- Completed System updates to improve performance during moderate ionospheric activity
- Supported continuous monitoring of system data that contributes to continued integrity assurance
- Began transition of Second Level Engineering from contractor based to organic FAA capability
- Phase IV: Dual Frequency (L1,L5) Operations (2014 2044)
  - Includes the transition from use of L2 to L5 in WAAS reference stations
  - Infrastructure modifications to support future L1/L5 user capability
  - Support sustainment of WAAS GEOs




## Future LPV-200 Coverage(Dual Frequency GPS)



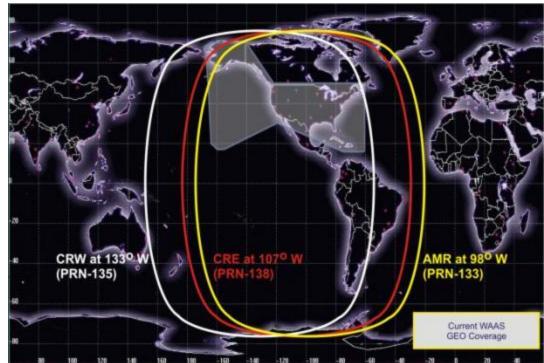

WAAS Overview October 2014





# **WAAS Schedule**



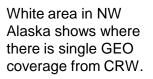

# **GEO** Activities

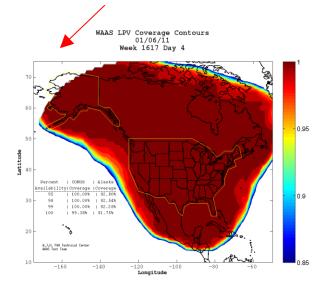
# Current WAAS GEO satellites

- Intelsat Galaxy XV (CRW)
- Anik F1R (CRE)
- Inmarsat I4F3 (AMR)

### GEO 5 and GEO 6

 GEO 5 Contract awarded September 2012




# **GEO Loss Realized**

### Impact of GEO Loss

- April 5 2010: Total loss of Telemetry Tracking and Command (TT&C) resulted in uncontrolled easterly drift of Intelsat Galaxy 15 (CRW)
- As CRW drifted, NW Alaska lost WAAS service
- In addition, a large portion of Alaska was now provided service by a single GEO (CRE)
  - WAAS Users Experienced Outages During Switchover of CRE uplink stations from primary to backup
  - Temporary Loss of Service Approximately 5 Minutes Per Event
  - Occurred 3-6 Times Per Month for CRE during 2010
- WAAS Program implemented third GEO satellite (AMR, PRN 133)
  - GEO operational in Nov 2010
  - Does cover as much of Alaska as CRE does
  - Still had service outage in much of Alaska when CRE was not transmitting
  - CRW came back into service in March 2011







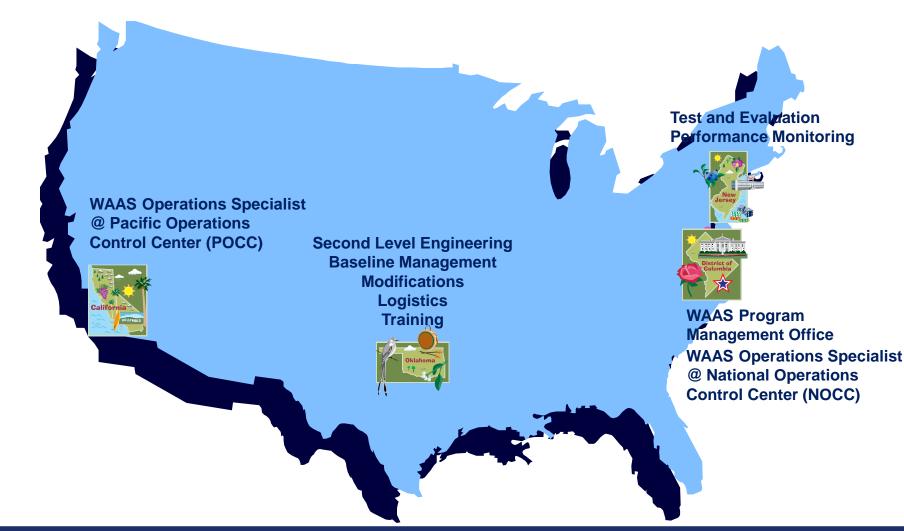
# **GEO Sustainment**

### GEO 5 and GEO 6 Satellite Acquisition

- Awarded GEO 5/6 Satellite Service Lease contract September 2012
- Eutelsat 117 West B (formally called SatMex 9) satellite will host the WAAS GEO Satellite Payload
  - Orbital slot (117 degrees West) will provide full coverage over CONUS and Alaska
  - Critical Design Review (CDR) completed July 2014
  - Scheduled for operations in 2017
- GEO 6 Satellite opportunities currently under investigation

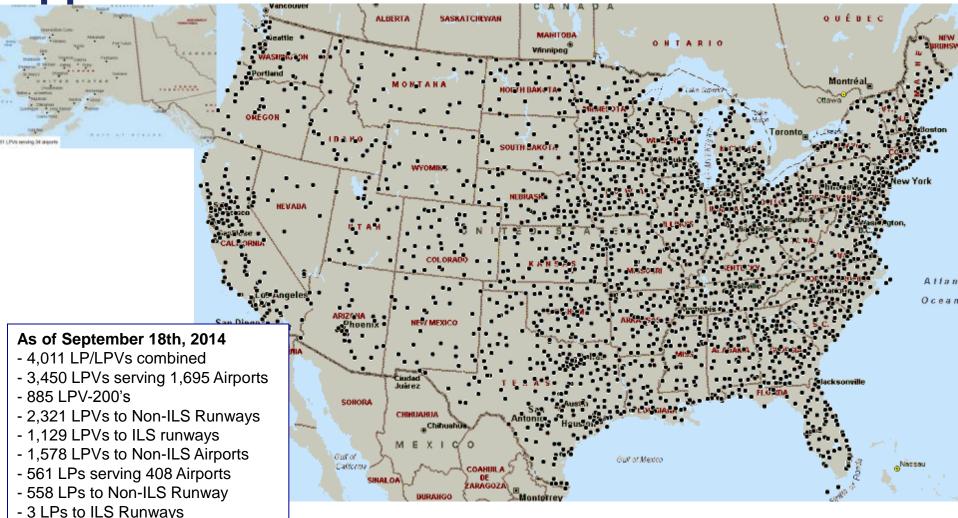


# **WAAS Operations and Maintenance**


- WAAS is operated 24/7 by WAAS
   Operations Specialists
  - Washington DC and San Diego CA

### Operations Support

- Second Level Engineering
- Baseline management
- Performance Monitoring
- Logistics
- Modifications




# **WAAS Operations and Maintenance**





# Airports with WAAS LPV/LP Instrument Approaches





### WAAS LPV Equipped Aircraft August 2014 (Estimated)

#### Garmin -68,743

- GA Aircraft (See FAA Garmin Approved Model List (AML)). Most GA Part 23 aircraft.
- GTN series Lear 35/35A, 36/36A,24 Phenom300 with G-3000

#### Universal Avionics – 2,289 aircraft

122 fixed wing and 12 helicopter types and models

#### RockwellCollins – 1,929 aircraft

37 Types and models

#### Honeywell /CMC Electronics) – 921 aircraft

22 types and models

#### Avidyne – 238 aircraft

- 6 types and models (Cirrus SR 20 & 22, Piper Matrix & Mirage, Piper Saratoga NX, and EA-500)
- IFD 540 WAAS LPV (STC complete July 2014 AML STC approved for over 1,000 aircraft makes and models)

#### Genesys Aerosystems (Chelton) – 247 aircraft

 Bell-407 & 412, Cessna 501, 550, Piper PA-42, Beechcraft C-90&A, EurocopterAS-350, AgustaAW109SP, Beechcraft T-34B, Kawsaka

#### Innovative Solutions & Support (IS&S) – 200 aircraft

- Eclipse 550/500
- Boeing 737-400 (pending)
- MD-88/90 (pending)

#### Thales – 5 aircraft

- Airbus A300-600ST (Beluga)
- Airbus A400M (Military)
- Airbus A350XWB pending

#### TOTAL Estimated WAAS LPV Equipped Aircraft – 74,572

WAAS Overview October 2014



# **Current WAAS Projects**

#### • Garmin RF Turn

Updating TSO & STC for GTN-600/700 series avionics

#### ExpressJet Airlines

- WAAS data collection in progress
- Completed Mexican LPV Procedure Developer Training

#### Horizon Air Regional Airline Project

- The goal of this work is to collect Flight Technical Error (FTE) with HGS to support operational approval to conduct RNAV (GPS) approach operations to minima as low as 150 feet DA and 1800 RVR
- Horizon experiencing pilot exodus/shortage and currently unable to dedicate simulator time to project
- MOU currently in final staffing in Flight Standard

#### • UAS/UAV

- Coordination with Conoco Phillips
- Completed collection 1st set of pre-WAAS data
- Currently reviewing data



# **Future Applications**

- WAAS is an enabler for multiple FAA initiatives
  - Performance-based navigation (Area Navigation) (RNAV)
  - Required Navigation Performance (RNP)
    - WAAS meets the requirement for RNP AR as defined in FAA Advisory Circular 90-101A
    - No restriction due to temperature
  - Point in Space (PinS) procedures
  - Automatic Dependent Surveillance Broadcast (ADS-B)
    - WAAS is currently the only technology that meets all of the most stringent requirements for a positioning source for ADS-B



# **Questions?**





### AGENDA (16:15 – 17:15)

#### 16:15-17:15 Successful EGNOS implementation stories in Aviation (II)

WAAS' successful implementation and return on experience in the US Bill Wanner – WAAS program Test Director (FAA)

∽Success on A-350 EGNOS flight test

Jean-Christophe Lair – Test Pilot (AIRBUS)

Practical EGNOS avionics solutions

Alain Beaulieu – GPS Program and Product Mngr (CMC Electronics)

17:15-17:30 EGNOS awards and Conclusions

An ale .

Jean-Christophe Lair

Airbus Test Pilot

# Feedback on EGNOS from A350 flight tests

Development of LPV approach capability on a large transport aircraft



### A350 XWB in figures (A350-900)

- Dimensions
  - Length: 68.89m
  - Wingspan: 64.75m
  - Height: 17.05m
- Engines
  - 2 x Rolls Royce Trent XWB
  - Thrust Rating: 84,000 lbs
- Max takeoff weight: 268t
- Fuel Capacity: 110T (138,000l)
- Typical cruise speed: Mach 0.85
- Maximum CRZ altitude: FL430



### Already 750 firm orders (end Aug. 2014)



### A350 XWB in Flight Test

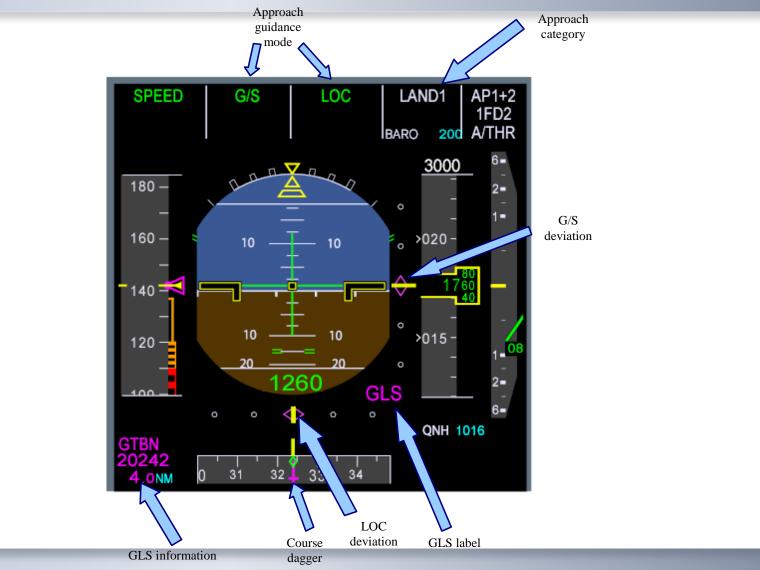
- 5 prototype A/C
  - Maiden flight of MSN1 on June 14th, 2013
  - Most recent A/C MSN5 joined the fleet on June 20th 2014
- 640 flights and 2700 Flt Hrs (mid Sept. 14) for development and certification
  - EASA certification achieved on Sept. 30th 2014
  - Current flight test activities linked primarily to functions introduced at Entry Into Service (EIS)
- GLS and SLS functions (GBAS and SBAS) are certified part of this "EIS" package as a combined option
  - On board all 5 prototype A/C
  - Selected by most customers (including launch customer QTR Airways)



### The background: Airbus xLS concept

- ILS is the reference instrument approach system for all pilots
- xLS concept provides ILS "look alike" crew interface for all possible sources (all possible x)
  - MLS and GLS (GBAS) were the first applications of the xLS concept
- When developing the A380, Airbus introduced FLS (FMS Landing System), which provides an xLS solution for Non Precision Approaches with Baro-VNAV guidance:
  - Conventional (e.g. VOR, NDB,..)
  - RNAV(GNSS) (RNP APCH)
  - LOC only (or G/S transmitter failed)




### The background: Airbus xLS concept

- xLS is based on:
  - Identification of the final approach reference segment (Lateral and Vertical)
  - Computation of LOC and G/S deviations from the reference segment
- Final approach segment is equivalent to the ILS beam
- LOC and G/S deviations are used by pilots (and A/C systems) in the same way as for ILS deviations
- Pilots get similar interfaces for all xLS applications (e.g. ILS, GLS, or FLS)
- Multi Mode Receiver (MMR) manages the radio sensors, computes deviations, and ensures interface with display and guidance systems

xLS expands the ILS operational benefits to all kinds of approaches



### xLS data on Primary Flight Display





Page 125

### SBAS / LPV approaches: Airbus SLS function

- The new SBAS / LPV approaches are halfway between RNAV(GNSS) and GLS approaches:
  - Technology is very similar to GLS
  - Charting is made through RNAV approaches (with LPV minima)
- RNAV/LPV approaches obviously fit perfectly into the xLS concept
- SLS acronym was selected for the A/C function supporting SBAS applications (LPV or LP)
- Airbus SLS function is first introduced on A350 XWB



### SBAS / LPV approaches: Airbus SLS function





Page 127

### SLS / GLS functions comparison

SLS is a subfunction of MMR very similar to GLS:

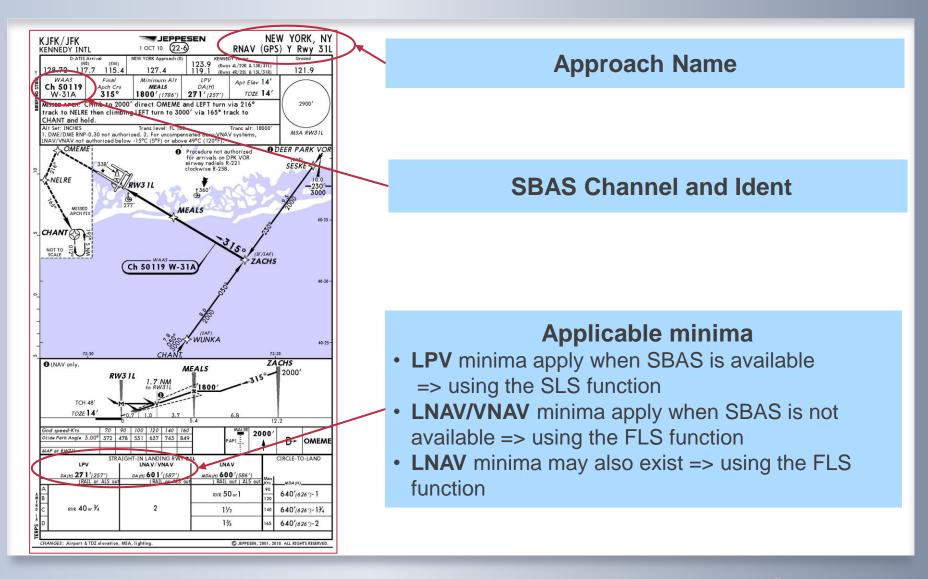
#### • GLS:

- Based on GBAS technology
- Selection of GLS appr. in FMS (back-up tuning possible by ident / channel)
- $\circ~$  FAS Data Block uplinked from ground station
- $\circ~$  GPS correction data transmitted by local ground station
- xLS type HMI, LOC and GS guidance modes with Autoland capability

### • SLS:

- Based on SBAS technology
- $\circ~$  Selection of eligible RNAV approach in FMS
- $\circ~$  FAS Data Block retrieved from FMS Nav DB
- $\circ~$  GPS correction data transmitted by geostationary satellite
- xLS type HMI, LOC and GS guidance modes currently without <u>Autoland</u> capability




### Use of SLS function for LPV approach

- LPV approaches are published as RNAV(GNSS) or RNAV(GPS) with LPV minima
- A single RNAV(xxx) chart may therefore support
  - SBAS based approach (with LPV minima), and
  - "Basic" RNAV APCH based on non-augmented GPS (with LNAV/VNAV or LNAV only minima – flown with FLS function)
- When selecting RNAV (xxx) approach with both LPV and LNAV/VNAV minima :
  - SLS function is selected by default (for LPV minima)
  - FLS function is available as back-up (for LNAV/VNAV minima)



**Page 129** 

### RNAV – LPV approach chart





### SLS / LPV – Standard Operational Procedure

- LPV approaches with SLS function are flown like ILS approaches
- Approach preparation = same as usual
  - Select the appropriate approach from the list stored in NavDB according to the desired approach chart
  - Verify approach parameters on EFIS regarding the approach chart
    - Ident, Channel, Course (on PFD & ND)
    - Approach segment (on ND)
- Approach execution = same as usual
  - Fly the approach with an "ILS look-alike" operational procedure



April 2014

Page 131

### SLS / LPV – Pilot feedback

- Absolutely no issue with EGNOS service in our current Flight Test experience
- SLS shows its value every day we use it for approach

FAS DB really brings robustness compared to usual FMS coding
 Geometric Glide Path is a real asset compared to Baro VNAV

- SLS / LPV signal as observed on A350 is operationally equivalent to Cat1 ILS and sometimes even better:
  - A/C position relative to the FAS is always available and reliable
  - No false LOC or GS side lobes
  - No perturbation linked to ILS protected area (potential for closer separation)

Excellent feedback on A350 from Airbus Flight Crew and Authority Pilots



### SLS / LPV – Pilot feedback

SLS / LPV solutions, based on SBAS technology, can really benefit to flight operations of transport aircraft of any type:

- Can be made available at almost any runway end (without additional ground infrastructure)
- Provide increased Performance and Robustness compared to "normal" GNSS approach

Benefits potentially apply to all categories of airports:

- LPV is an ideal back-up solution on main runways currently equipped with ILS (e.g. in case of failure or maintenance)
- Allows creation of instrument approaches at many runways which do not currently have Precision Approach capability
- Can also help in case of diversion to an en-route alternate



### SLS / LPV – a pilot's wish list

EGNOS and WAAS already enhance flight operations, by making precise and safe instrument approaches possible at many runways in Europe and North America

There could be larger benefits to the air transport community with some involvement from the stakeholders

This is what I'd like to see as an operational pilot:

- > LPV approaches at all runways within adequate SBAS coverage
- Additional SBAS constellations / regions
- LPV200 capability and "real" Cat1 minima
- LPV solution on more A/C types



April 2014

Happy LPV and A350 landings...





© AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. This document and all information contained herein is the sole property of AIRBUS S.A.S. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS S.A.S. This document and its content shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS S.A.S. This document and its content shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS S.A.S. This document and its content shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS S.A.S. This document and its content shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS S.A.S. This document and its content shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS S.A.S. This document and its content shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS S.A.S. Will be pleased to explain the basis thereof.

AIRBUS, its logo, A300, A310, A318, A319, A320, A321, A330, A340, A350, A380, A400M are registered trademarks.



### AGENDA (16:15 – 17:15)

#### **16:15-17:15** Successful EGNOS implementation stories in Aviation (II)

☞WAAS' successful implementation and return on experience in the US Bill Wanner – WAAS program Test Director (FAA)

∽ Success on A-350 EGNOS flight test

Jean-Christophe Lair – Test Pilot (AIRBUS)

Practical EGNOS avionics solutions

Alain Beaulieu – GPS Program and Product Mngr (CMC Electronics)

17:15-17:30 EGNOS awards and Conclusions

# Esterline CMC Electronics

#### **Practical EGNOS Avionics Solutions**

Alain Beaulieu, Program Manager GPS



MONTREAL • OTTAWA • CHICAGO

www.cmcelectronics.ca



## **Esterline Overview**

- Headquarters: Bellevue, Washington
- Public company (NYSE: ESL) founded in 1967
- Key markets:
  - Commercial aviation (40%)
  - Military aviation (40%)
  - Industrial applications (20%)



#### **Avionics and Controls**

Avionics systems and components, technology interface systems, including lighted switches and displays, pilot grips and wheels for commercial and military aircraft, military vehicles.



#### **Sensors and Systems**

High-precision temperature and pressure sensors, power distribution equipment, motion control components, related systems.

- Employees: > 12,000
- Revenues: \$ 2 billion



#### **Advanced Materials**

High-performance elastomer products, insulation and thermal protection systems, combustible ordnance, electronic warfare countermeasure products.

# **CMC Electronics Overview**

- Headquarters: Montreal, Quebec
- Incorporated in 1903



#### Cockpits and Systems Integration

Cockpit Retrofits New Cockpit Builds Human Factors Engineering

- Key markets:
  - Commercial aviation (49%)
  - Military aviation (51%)



#### **Aviation Products**

Navigation and FMS Displays and Vision Systems Airborne Communications

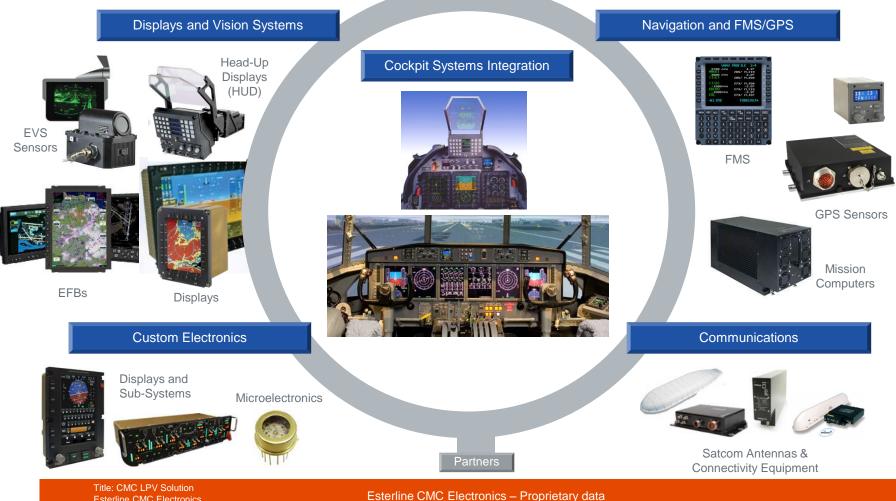
- Sales distribution:
  - United States (56%)
  - Canada (13%)
  - International (31%)
- Employees: >1,000



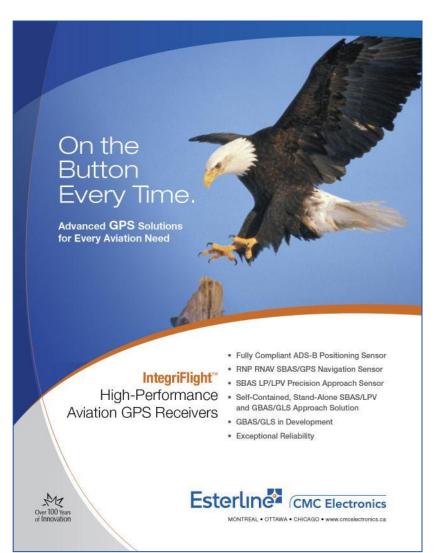
#### **Custom Electronics**

Avionics Components Displays and Sub-systems Hybrid Microcircuits

# 55


#### **NavComm Electronics**

Communications and electronics systems for land and marine applications

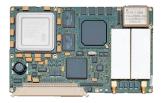

## **CMC** Avionics Portfolio

Esterline CMC Electronics Date: October 2014

- · Innovative avionics products and integrated cockpit systems solutions
- Addressing need to modernize cockpits meeting international regulatory mandates



### Product Offering(s): CMA-5024/25 GLSSU






#### CMA-5024 GLSSU



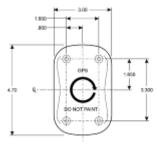
#### CMA-5025 GLSSU Control Panel





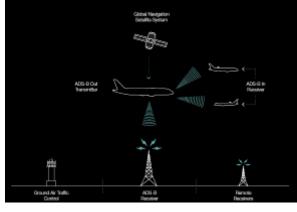
Title: CMC LPV Solution Esterline CMC Electronics Date: October 2014

Esterline CMC Electronics – Proprietary data


### 

### CMA-5024 GLSSU - Characteristics

- State-of-the-art Patented 24 channel Narrow Correlator
   ® ARINC 743B compliant SBAS sensor unit
  - Three SBAS and twenty-one GPS continuous channels with full RTCA/DO-229D message processing
- TSO-C145c Beta-3 GPS receiver
  - TSO C145c incorporate more stringent standards that outperform TSO -C129a in all operating conditions
    - FAA has cancelled TSO-C129a and does not allow re-certification to that standard
  - GLSSU meets or exceeds any TSO-C196 GPS (only) receiver
- TSO-C146c Delta-4 Landing system
- Software certified to RTCA/DO-178B Level B
- Hardware certified to RTCA/DO-254 Level B
- Software upgradeable to GBAS/LAAS
- The GLSSU includes an Aircraft Personality Data file (APD File) that contains aircraft-specific Configurations
  - Provide the flexibility of adapting GLSSU to the needs of several aircraft within a large fleet.
- Active antenna compliant with TSO C-190
  - Allow to install the GLSSU in any location



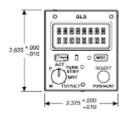

TSO-C190 Antenna



## CMA-5024 GLSSU - Navigation

- High-integrity SBAS Beta-3/ Delta-4 Navigation source with the highest levels of integrity and availability for RNP RNAV
  - FMS can immediately benefit from an improved RNP navigation performance
- GPS/SBAS Primary Means of Navigation
- Velocity Accuracy < 0.5 knots, 95%, velocity as per RTCA/DO-229D Appendix F
- Navigation Accuracy: RNP0.1 >99.999% availability with SBAS, and Primary Means Navigation as per RTCA/DO-229D
- SA-Aware (SA-OFF) when out of SBAS coverage
  - Fault Detection and Exclusion (FDE) and predictive RAIM with automatic pressure altimeter incorporation
  - Provide significantly improved level of integrity compares to equipments approved based on TSO C-129 Standards
- Supports all legacy FMS certified under TSO C-129a without modification, all legacy data and wiring retained per ARINC-743B




ADS-B



### CMA-5024 GLSSU - Landing System

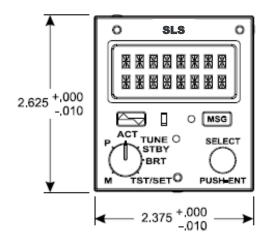
- Self-contained GPS approach solution with an integrated digital high-integrity switch and a companion control head
  - FMS not required to enable LPV
    - LPV is activated via the annunciator panel and managed via the CMA-5025 Control Panel
  - With CMA-5025 Control Panel, it provides a fully functional, stand-alone LPV system.
  - The CMA-5024 provides supports for ARINC-743B,709 and 710 with DME, ILS look-alike guidance signals to the autopilot and displays.
- The CMA-5024 includes a built-in digital high integrity switch for approach selection between ILS and GPS (SBAS or GBAS).
- LPV minima are typically lower then RNP minima
  - Provide CAT 1 equivalent approach capability with decision height of 200 feet and visibility minimums as low as 1/2 mile
- Can host entire SBAS worldwide approach database







CMA-5025




# CMA-5025 GLSSU Control Panel

- With CMA-5024, it provides a fully functional, stand-alone LPV system.
   It is used to select/enable LP/LPV approach.
- Meets all RTCA/DO-229D LPV approach requirements without waiver or exception.
- FMS not required to enable LPV
  - A fully independent stand-alone LPV capability, "bolts-on" to existing aircraft
  - Integrated OEM FMS solutions possible
- GBAS capable, RTCA/DO-253B GLS approach ready



CMA-5025



## Some problems LPV is helping to resolve

- Schedule reliability for charter or scheduled flights due to absence of traditional ground-based approach aids on remote destinations.
  - Issues: Runways without ILS, severe weather, and night landing
- Cost of new infrastructure
  - ILS is costly to install compared to publishing an LPV approach
  - Maintenance: periodic LPV re-survey versus ILS antenna re-cal
- NPA are designed with step-down level-off segments: fuel burn
- ILS Weaknesses
  - Clear surrounding area (multipath issues)
  - Must be "on the runway"
  - ILS ground support equipment failures
  - Occasional glide-slope "glitches" causing go-arounds
- Reduce airport maintenance with planned removal of ILS facilities
  - Re-confirmed by FAA during LPV progress meeting (Feb 2013)
- World wide, the government are looking at decommissioning ILS Cat-1 on Tier II/III airports



# **One GPS Solution for Many Platforms**



Title: CMC LPV Solution Esterline CMC Electronics Date: October 2014

Esterline CMC Electronics – Proprietary data



#### ADS-B Installation on the B-737

CMA-5024 GLSSU





**GLSSU** location



#### **Annunciator Panel**



Title: CMC LPV Solution Esterline CMC Electronics Date: October 2014

#### **RNP/LPV** Installation on the B-737

Standalone LPV on MMR Aircraft



Title: CMC LPV Solution Esterline CMC Electronics Date: October 2014

Esterline CMC Electronics – Proprietary data





Title: CMC LPV Solution Esterline CMC Electronics Date: October 2014

Esterline CMC Electronics – Proprietary data

## Nav/LPV - Installation on A300/A310

- A310 and A300-600ST (Beluga)
  - DND
    - GLSSU for Nav, and ADS-B
    - LPV next





Successful Flight Test (Airbus/EASA in September 2013):

 Beluga landing with LPV all the way to touch down, in autoland mode with autoflare. This is the second time that the Beluga team performed and autoland with LPV under EGNOS (previously tested October 2012)

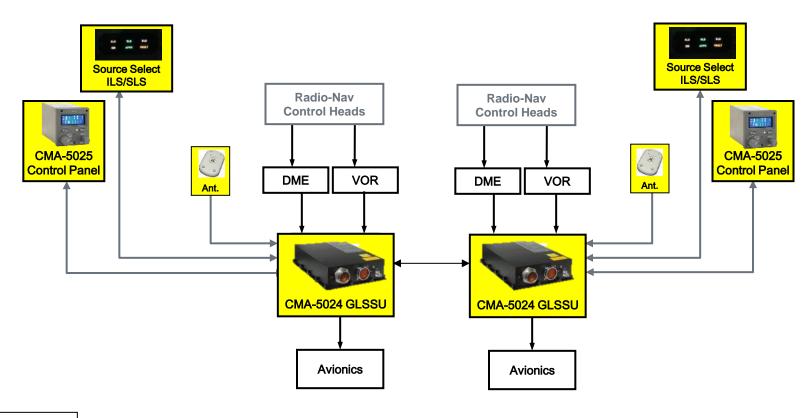


Title: CMC LPV Solution Esterline CMC Electronics Date: October 2014 Beluga LPV approach test with Autoland; Toulouse - Blagnac 16 September 2013

**CMC Electronics CMA-5024 GLSSU & CMA-5025 Ctrl Panel** 

#### Installation on Helicopter – Nav/LPV

- AW 139 LPV
  - LPV Based on both SBAS CMA-3024 and HI Primus Epic as a dual config SBAS

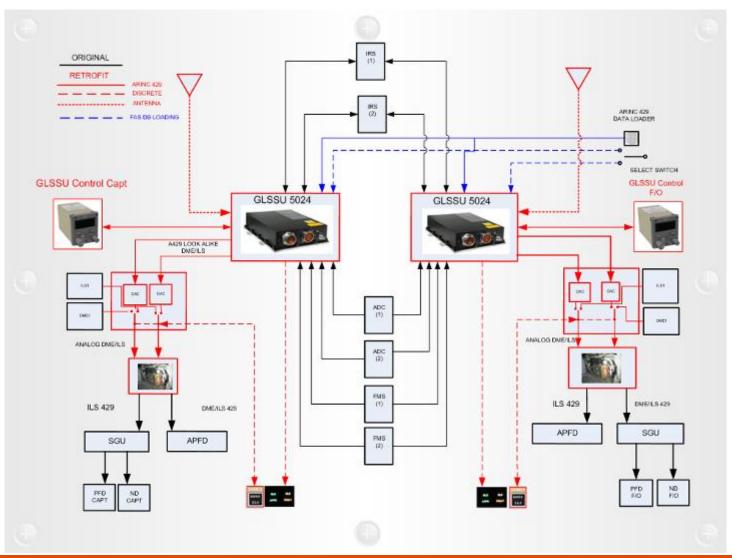





Currently working on an integrated solution with CMA-5024 GPS and CMA-9000 FMS



#### LPV Update Generic Block Diagram




Existing Equipment

New Equipment

Existing navigation system is not touched No pilot re-training for navigation system LPV is ILS Look-Alike

#### **B737 LPV Block Diagram**



Title: CMC LPV Solution Esterline CMC Electronics Date: October 2014

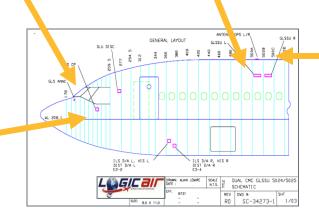
Esterline CMC Electronics - Proprietary data



## Boeing 737 Installation Pictures - GLSSU



Annunciators

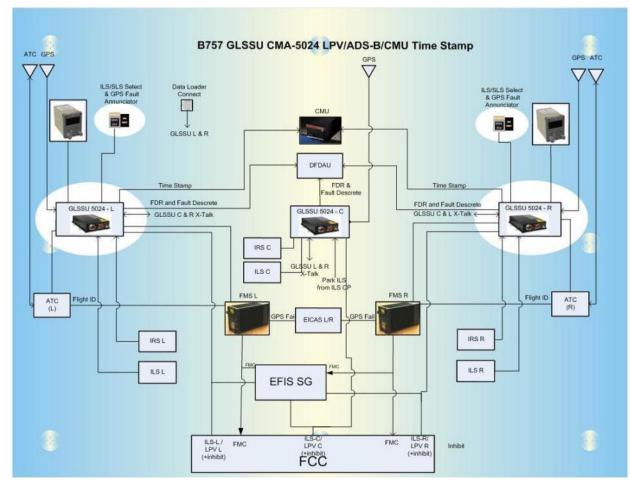



CMA-5024 GLSSU

- GLSSUs are installed in the ceiling of the B737 500 Area
- Use the Boeing provisioned supports when available



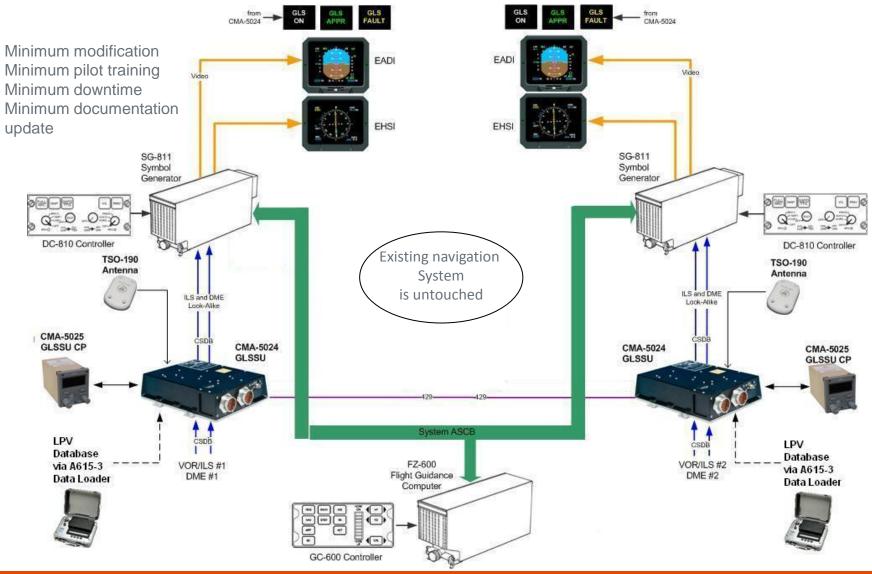
• CMA-5025 GLSSU CP






TSO C190 Active
 Antenna

Title: CMC LPV Solution Esterline CMC Electronics Date: October 2014


# Boeing 757/767 Design



- CMA-5025 installed on the Pedestal
- Annunciators installed in Pilot Primary Field of View
- Interface Transponder for ADS-B, if required
- Interface FMS for Navigation (RNP), if FMS H/W, OPC permits

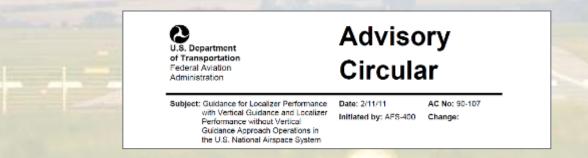
#### Esterline CMC Electronics

## ATR 42/72 -200/300/500 Proposed Design



Title: CMC LPV Solution Esterline CMC Electronics Date: October 2014

Esterline CMC Electronics – Proprietary data


#### Esterline (CMC Electronics



#### **Operationally: Similar to an ILS approach**

## Operation

- LPV approaches/vertical guidance derived *exclusively* from SBAS and are not affected by temperature.
- Design criteria is very much like an ILS and can be as low as 200 with a half mile visibility.
- AC 90-107 provides guidance for operational approval



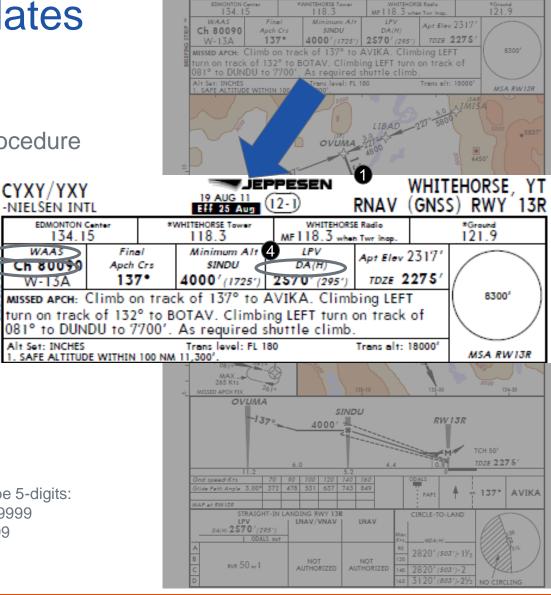
 OpSpec/MSpec/LOA paragraph C052 and C053 provide guidance on training requirements



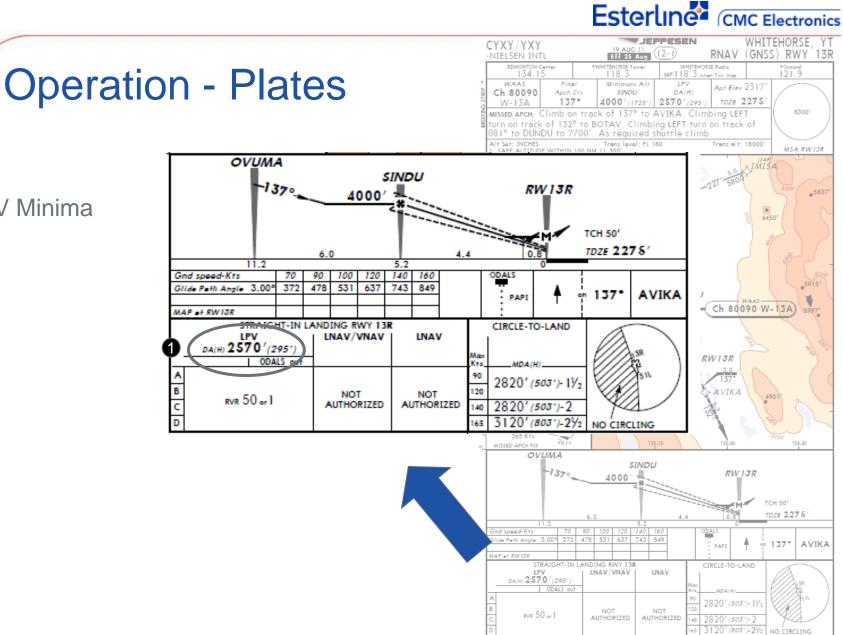
WHITEHORSE,

RNAV (GNSS) RWY

JEPPESEN


EFF 25 Aug

# **Operation - Plates**


- 1 LPV is a RNAV (GNSS) procedure
- 2 5 digit WAAS Channel Number SBAS Ch 80090
- WAAS Approach ID:
   W=WAAS, Runway 13,
   A= 1st approach on that Runway

#### 4 LPV DA (H)

By definition, channel number will always be 5-digits: LP/LPV channel numbers from 40000 to 99999 GLS channel numbers from 20000 to 39999



CYXY/YXY



#### **1** LPV Minima

### **Operation - Example**





- Flight Crew Actions
  - Select a RNAV Approach plate for Runway (example RNAV 13R) for the LPV approach
  - <u>New Action</u>: Enter the 5 digit number into the Control Panel, the 5 digit number is obtained from the approach plate's WAAS Channel Number, eg 80090.
  - <u>New Action:</u> Select LPV approach using source select switch on forward instrument panel.
  - Maintain map mode on ND during approach
  - Select LAND/ILS mode on autopilot
  - Autopilot transitions to ILS/LPV as per normal
  - FMS indicates normal precision approach
  - Pilot flies LPV like a standard Cat I ILS approach procedure
    - Missed approach as per ILS

#### **Operational Benefits - LPV**

- Operational Benefits
  - LPV is ILS Look-Alike
  - LPV plates are RNAV procedures
  - LPV is here and is expanding globally.
  - Implementation brings immediate savings
  - Installation in all aircraft is a reasonable and achievable bolt-on task
  - The CMA-5024 is certified, airline proven-in-service, with LPV
  - Reduced dependence on terrestrial navaids
    - Improved dispatch reliability SIDS (use SBAS as navigation source)
    - Improved STARS (use SBAS as navigation source & LPV)
    - <u>Can continue LPV operations when ILS is out-of-service to all runways</u>
  - Enhanced operational safety due to the vertical guidance provided
  - No false-glideslope capture
  - No operational limitation due to cold weather

#### Infrastructure Benefits - LPV

- Infrastructure benefit
  - Terrain variation does not impact publication of a LPV approach
  - No maintenance (contrast this to ILS continual flight inspection)
  - All SBAS services are interoperable (WAAS, EGNOS etc.) so only one type of SBAS receiver is required
- FAA LPV published advantages: (source: Federal Aviation Administration Implementation of WAAS LPV Procedures) – published in 2004
  - Procedure Integrity
  - Lower Minimums
  - Significantly increases the number of available instrument approaches

#### Esterline CMC Electronics

#### **Operation - Customer feedback - LPV**



Multiple A/C operating in Canada, Air North flies LPV approaches daily

Chris Drossos, 737-300 project pilot for Canadian North

"The addition of LPV capability to our aircraft permits us to provide significantly improved schedule reliability for our scheduled and charter clients, given the absence of traditional ground-based approach aids at many of the remote Canadian destinations we serve. From the pilot's perspective, CMC's LPV system provides a clean, straightforward interface which behaves exactly like an ILS, but with the

exceptional SBAS performance and availability."

Title: CMC LPV Solution Esterline CMC Electronics Date: October 2014

#### And prepared for the future... GBAS

- GBAS/GLS is very similar to SBAS/LPV operationally, both currently deliver CAT-I performance.
- GBAS will be delivering CAT-I to CAT-III operations; however, CAT-II/III MOPS are still in development, and GBAS CAT-I not deployed yet.
- Differences between the systems
  - LPV receives error corrections from SBAS geostationary satellites, GLS receives error corrections via uplink from GBAS ground station.
  - LPV Final Approach Segment (FAS) is hosted in the avionics database, GLS FAS uplinked via VHF Data Link from the GBAS ground station.
  - Concepts between GBAS/GLS and SBAS/LPV are highly similar except GBAS GLS requires ground stations to work, SBAS LPV is self-contained
- CMA-5025 already provide GBAS capability

#### 2014 EGN SERVICE PROVISION WORKSHOP



# **CMC Electronics**

# at your service

**Thanks you** 

# <u>awards</u>

# The EGN Service Provision workshop





ation tems (Junded by th







#### in recognition of the EGNOS Working Agreement with

# MADG: Cambridge Airport



European Global Navigation Satellite Systems Agency



#### in recognition of the EGNOS Working Agreement with

# Wolverhampton Airport Ltd.



European Global Navigation Satellite Systems Agency



#### in recognition of the EGNOS Working Agreement with

# ROMATSA





# 7-8 October Lisbon The EGN (S Service Provision workshop

social



